
Enforcing Confidentiality Constraints on
Sensitive Databases with

Lightweight Trusted Clients

Valentina Ciriani1, Sabrina De Capitani di Vimercati1, Sara Foresti1,
Sushil Jajodia2, Stefano Paraboschi3, and Pierangela Samarati1
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Abstract. Existing approaches for protecting sensitive information
stored (outsourced) at external “honest-but-curious” servers are typically
based on an overlying layer of encryption that is applied on the whole
information, or use a combination of fragmentation and encryption. The
computational load imposed by encryption makes such approaches not
suitable for scenarios with lightweight clients.
In this paper, we address this issue and propose a novel model for enforc-
ing privacy requirements on the outsourced information which departs
from encryption. The basic idea of our approach is to store a small por-
tion of the data (just enough to break sensitive associations) on the client,
which is trusted being under the data owner control, while storing the
remaining information in clear form at the external (honest-but-curious)
server. We model the problem and provide a solution for it aiming at
minimizing the data stored at the client. We also illustrate the execution
of queries on the fragmented information.

1 Introduction

The design of distributed databases and associated techniques have been a topic
of interest in the 1970s, at the birth of relational technology. The scenario that
was considered in those years was significantly different from the current sce-
nario: the emphasis was on the implementation of systems owned by a large
organization managing information systems in several centers that offered the
opportunity for the processing of distributed queries. The current ICT scenario is
instead characterized by many important opportunities for the use of distributed
databases where previous assumptions do not hold. Two important differences
compared to traditional approaches are: 1) the need to integrate the services of
database providers that do not belong to the same organization; 2) the pres-
ence of a variety of platforms, with an increase in the number and availability
of devices that have access to a network connection, together with the presence
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of powerful servers offering significant computational and storage resources. The
first aspect forces the requirement to specify security functions limiting access
to the information stored in the databases. The second aspect instead forces
an environment where the data and computational tasks are carefully balanced
between the lightweight device and a powerful remote server. The two aspects
are strictly related, since the servers are typically owned by service providers
offering levels of cost, availability, reliability and flexibility difficult to obtain
from in-house operations. Note that we classify as “lightweight” any device that
exhibits performance or storage features that are significantly worse than what
can be offered for the specific application by a remote service provider. Mobile
devices certainly fit this description, but the scenario can be extended to generic
computational platforms.

The motivation of this work lies in the desire to define novel solutions for
the processing of large data collections, which we assume managed by traditional
database technology, in a scenario where we are interested in using the services of
a honest-but-curious powerful server, with a robust guarantee that confidentiality
of information is protected.

In the literature, this problem has been addressed by combining fragmen-
tation and encryption, thus splitting sensitive information among two or more
servers and encrypting information whenever necessary [1, 8, 9]. In [1], the sensi-
tive relation is split into two fragments stored at two non communicating servers,
which must not know the identity of each other. This limitation on the num-
ber of fragments produced implies that it is not always possible to protect the
confidentiality of information by simply splitting the involved attributes into
two fragments and therefore can be encrypted. The main limitations of this so-
lution are that: 1) the absence of communication between the two servers is
clearly a strong assumption and difficult to enforce in real environments; 2) the
query evaluation process requires the data owner to interact with both servers
for joining (if needed) the two fragments and to decrypt the attributes possibly
encrypted that appear in the query. In [8, 9] these limitations are removed since
a relation R is split into two or more fragments possibly stored on one server
and limits the use of encryption for protecting the single sensitive attributes.
Furthermore, for query execution efficiency, attributes that are not represented
in the clear within a fragment are represented in encrypted form, providing the
nice property that each fragment completely represents the original relation. The
consequence of this design choice is that to evaluate a query, it is sufficient to
access a single fragment, thus avoiding join operations (needed with the previ-
ous paradigm), which are quite expensive. This solution however still requires
the client to possibly decrypt the attributes appearing in encrypted form in the
fragment for evaluating a condition on them or for returning them to the user.

A common assumption of these solutions is that encryption is an unavoidable
price to be paid to protect the information. There are, however, situations where
encryption may not be applicable for protecting information. One issue can be
the computational load imposed by encryption. For instance, in systems more
constrained in battery power rather than memory capacity, it is beneficial to



spend some memory space to save on power consumption. Also, in real systems
keys can become compromized, and keys can become lost, making the protection
of the system dependent on the quality of key management services, rather than
on the quality and strength of the cryptographic functions. Since key manage-
ment is known to be a difficult task, we expect that an encryption-less solution
can be of interest for many important applications.

To address these situations, we propose a paradigm shift where information
is protected without encryption. The basic idea is that a small portion of the
sensitive information can be stored on the client, trusted for both managing the
information and for releasing such a sensitive information only to the authorized
users, while the remaining information can be stored on an external server. Obvi-
ously, from the information stored on the external server it should not be possible
to reconstruct a sensitive association (confidentiality constraint) since otherwise
a privacy violation occurs. Since we do not want to remove the assumption that
the external servers are all honest-but-curious, the client is the only entity in
the system that can manage a portion of sensitive data. Sensitive data and as-
sociations can then be protected by splitting the original relation R into two
fragments, denoted F o and F s, stored at the client and at a honest-but-curious
storage server, respectively.

In the following sections, we describe how to correctly apply the above-
mentioned approach. The remainder of the paper is organized as follows. Sec-
tion 2 presents the basic concepts of the model. Section 3 introduces the idea of
a correct and minimal fragmentation. Section 4 analyzes the minimization prob-
lem. Section 5 discusses the execution of queries in this architecture. Section 6
presents related work. Finally, Sect. 7 draws some conclusions.

2 Basic Concepts

We consider a scenario where, consistently with other proposals (e.g., [1, 8, 10]),
the data to be protected are represented with a single relation r over a relation
schema R(a1,. . . ,an). We use the standard notations of the relational database
model. Also, when clear from the context, we will use R to denote either the
relation schema R or the set of attributes in R .

Privacy requirements are represented by confidentiality constraints, which
express restrictions on the single or joint visibility (association) of attributes in
R . Confidentiality constraints are formally defined as follows [1, 8].

Definition 1 (Confidentiality constraint). Let R(a1, . . . , an) be a relation
schema, a confidentiality constraint c over R is a subset of the attributes in R.

While simple in its definition, the confidentiality constraint construct sup-
ports the definition of different privacy requirements that may need to be ex-
pressed. A singleton constraint states that the values assumed by an attribute
are considered sensitive and therefore cannot be accessed by an external party.
A non-singleton constraint states that the association among values of given



Patient

SSN Name DoB ZIP Job Illness Cause

123-45-6789 Alice 80/02/11 20051 Secretary asthma Dust allergy
987-65-4321 Bob 85/05/22 22034 Student fracture Car accident
147-85-2369 Carol 73/07/30 22039 Secretary carpal tunnel Secretary
963-85-2741 David 75/11/26 20051 Lawyer hypertension Stress
789-65-4123 Emma 90/03/15 22035 Student asthma Student
123-65-4789 Fred 68/08/07 22034 Accountant hypertension Wrong diet

(a)

c0= {SSN}
c1= {Name,Illness}
c2= {Name,Cause}
c3= {DoB,ZIP,Illness}
c4= {DoB,ZIP,Cause}
c5= {Job,Illness}
c6= {Job,Cause}

(b)

Fig. 1. An example of relation (a) and of confidentiality constraints over it (b)

attributes is sensitive and therefore should not be outsourced to an external
party.

Example 1. Figure 1 illustrates plaintext relation Patient (a) and the confiden-
tiality constraints defined over it (b).

– c0 is a singleton constraint indicating that the list of SSNs of patients is
considered sensitive.

– c1 and c2 state that the association of patients’ names with their illnesses
and with the causes of the illnesses, respectively, is considered sensitive.

– c3 and c4 state that the association of patients’ dates of birth and ZIP
codes with their illnesses and with the causes of the illnesses, respectively,
is considered sensitive; these constraints derive from c1 and c2 and from
the fact that DoB and ZIP together could be exploited to infer the name of
patients (i.e., they can work as a quasi-identifier [10]).

– c5 and c6 state that the association of patients’ jobs with their illnesses
and causes of the illnesses, respectively, is considered sensitive, since it could
be exploited to establish a correlation between the job and the illness of a
patient.

The satisfaction of a constraint ci clearly implies the satisfaction of any
constraint cj such that ci⊆cj . We are therefore interested in enforcing a set
C = {c1, . . . , cm} of well defined constraints, where ∀ci, cj ∈ C, i 6= j, ci 6⊂ cj .



3 Correct and Minimal Fragmentation

Given a set C of confidentiality constraints over relation R , our goal is then to
split R into two fragments F o and F s, in such a way that all sensitive data and
associations are protected. F o is stored at the client (owner) side, while F s is
stored at the external server side. It is easy to see that, since there is no encryp-
tion, singleton constraints can be protected only by storing the corresponding
attributes at the client side only. Therefore, each singleton constraint c={a} is
enforced by inserting a into F o and by not allowing a to appear in the schema
of F s. Association constraints are enforced via fragmentation, that is, by split-
ting the attributes composing the constraints between F o and F s. The resulting
fragmentation F=〈F o,F s〉 should then satisfy two important requirements: 1)
all attributes in R should appear in at least one fragment to avoid loss of infor-
mation; 2) the confidentiality constraints should be properly protected, meaning
that from the fragment stored at the external server (F s) it should not be possi-
ble to reconstruct the content of the original relation R . These two requirements
are formally captured by the following definition of correct fragmentation.

Definition 2 (Fragmentation correctness). Let R(a1, . . . , an) be a relation
schema, C={c1, . . . , cm} be a set of well defined confidentiality constraints over
R, and F=〈F o,F s〉 be a fragmentation for R, where F o is stored at the client
and F s is stored at a storage server.
F is a correct fragmentation for R, with respect to C, iff: 1) F o∪F s=R
(completeness) and 2) ∀c∈C, c 6⊆F s (confidentiality).

The first condition requires every attribute in the schema of the original re-
lation R to be represented in at least a fragment. The second condition requires
the fragment stored at the external storage server F s to not be a superset of any
constraint. Note that the second condition applies only to F s since F o, under the
client control and therefore accessible only to authorized users, can contain sensi-
tive data and associations. For instance, fragmentation F=〈{SSN,Name,ZIP,Job},
{DoB,Illness,Cause}〉 is a correct fragmentation for Patient in Fig. 1(a), with
respect to the confidentiality constraints in Fig. 1(b).

Since the client is supposed to have a more expensive storage, we are inter-
ested in computing a correct fragmentation that minimizes the client’s storage
due to the direct management of F o. We then require that the two fragments
F o and F s be disjoint, as formally stated by the following definition of non
redundant fragmentation.

Definition 3 (Non redundant fragmentation). Let R(a1, . . . , an) be a rela-
tion and C a set of well defined constraints over R. A fragmentation F=〈F o,F s〉
of R is non redundant iff F o∩F s=∅.

The non redundancy property does not affect the correctness of a frag-
mentation (Definition 2). Suppose that F=〈F o,F s〉 is a correct fragmentation
for R with respect to C, and that F o∩F s 6=∅. Any attribute a that appears
in both F o and F s can be removed from F o without violating Definition 2,



since a is still represented in F s and does not violate any constraint. In other
words, a correct fragmentation can always be made non redundant by remov-
ing from F o the attributes belonging to the intersection between F o and F s.
For instance, consider fragmentation F ′=〈{SSN,Name,ZIP,Job,Illness,Cause},
{DoB,Illness,Cause}〉, which is a correct fragmentation for relation Patient in
Fig. 1(a) with respect to the confidentiality constraints in Fig. 1(b). Fragmenta-
tion F=〈{SSN,Name,ZIP,Job}, {DoB,Illness,Cause}〉 obtained by removing the
attributes in F o∩F s={Illness,Cause} from F o is still correct and satisfies Def-
inition 3.

Our problem then consists in computing a fragmentation that is correct and
non redundant and that minimizes the storage at the client site. Let size(a )
be the physical size of attribute a and size(F) be the size of the fragmenta-
tion F , computed as the physical size of the attributes composing F o, that is,
size(F)=

∑
a∈F o

size(a ). Our problem can be formally defined as follows.

Problem 1 (Minimal storage). Given a relation R(a1, . . . , an) and a set of well
defined confidentiality constraints C={c1, . . . , cm} over R , compute a fragmen-
tation F=〈F o,F s〉 that satisfies the following conditions:

1. F is correct (Definition 2);
2. F is non redundant (Definition 3);
3. @F ′ such that size(F ′) < size(F) and F ′ satisfies the two conditions above.

Note that, given a relation R and a set of confidentiality constraints C over
it, there may exist different minimal storage fragmentations, all characterized by
the same size (i.e., with the same size for F o, which may however be composed of
a different subset of attributes of R). We consider all such solutions equivalent.

Note that, whenever the physical size of the attributes composing R is not
known (or the size of the attributes in R is similar and therefore cannot be
considered as a discriminating factor for choosing attributes to be stored at
the client site), Problem 1 can be exploited to compute a fragmentation that
minimizes the number of attributes stored at the client site by simply setting
size(a )=1, for all a∈R .

Example 2. Consider relation Patient and the confidentiality constraints on
it in Fig. 1 and suppose that: size(SSN)=9, size(Name)=15, size(DoB)=8,
size(ZIP)=5, size(Job)=10, size(Illness)=15, and size(Cause)=100. Fragmen-
tation F = 〈{SSN,Name,ZIP,Job}, {DoB,Illness,Cause}〉, with size(F)= 9+15+
5+10 = 39, is a minimal storage fragmentation for relation Patient with respect
to C. Suppose now that for all attributes a in Patient, size(a )=1. Fragmen-
tation F ′ = 〈{SSN,Illness,Cause}, {Name,DoB,ZIP,Job}〉 is a minimal (storage)
fragmentation, minimizing the number of attributes composing F o.

In the following, we formally analyze the minimal storage problem, proving
that it is NP-hard, and we present how a well-known approximation algorithm
can be adapted for its solution.



INPUT
R(a1, . . . , an) /* relation schema */
C={c1, . . . , cm} /* well-defined constraints */
size(a ), for all a∈R /* physical size of attributes */

OUTPUT
A correct, non-redundant fragmentation F=〈F o,F s〉

MAIN
to solve := C /* constraints to be solved */
F o := ∅ /* current solution */
while to solve 6=∅ do

Let a∈(R\F o) be the attribute maximizing |{c∈to solve: a∈c}|/size(a )
to solve := to solve\{c∈to solve: a∈c}
F o := F o∪{a}

F s := R\F o

return(〈F o,F s〉)

Fig. 2. Approximation algorithm for the minimal storage problem

4 Analysis of the Minimization Problem

The minimal storage problem (Problem 1) directly corresponds to the classical
NP-hard Weighted Minimum Hitting Set problem [13], which can be formulated
as follows: Given a finite set S, a collection C of subsets of S, a weight function
w : S → R+, find a hitting set S′, that is, a subset S′ of S containing at least
one element for each subset in C, such that w(S′) =

∑
s∈S′ w(s) is minimum.

The correspondence follows from the observation that any solution of the
minimal storage problem must insert in F o at least one attribute from each con-
straint in C to guarantee fragmentation correctness (Definition 2). The minimal
storage problem can then be formulated as the problem of finding the set of at-
tributes with lowest size (to be inserted in F o) for breaking each constraint. It is
then immediate to see that there is a correspondence between the two problems
(minimal storage and weighted minimum hitting set) that can be determined by
taking R as the finite set S, C as the collection C, and by taking as a weight
function w the attribute size (i.e., w(a ) = size(a )). Since the two problems are
equivalent, the minimal storage problem (Problem 1) is NP-hard.

We also note that, by fixing size(a )=1 for all a∈R , the minimal storage
problem directly corresponds to the classical NP-hard Minimum Hitting Set
problem [13], which can be formulated as follows: Given finite set S and a col-
lection C of subsets of S, find a hitting set S′, that is, a subset S′ of S contain-
ing at least one element for each subset in C, such that |S′| is minimum. The
minimum hitting set problem is equivalent to the minimum set covering prob-
lem [3]. Therefore, approximation algorithms and nonapproximability results
for the minimum set covering problem also apply to the minimum hitting set
problem. More precisely, the two problems are approximable within (1 + ln |S|)
in polynomial time [16]. It is interesting to note that this approximation ra-



iteration to solve
|{c∈to solve: a∈c}|/size(a )

F o
SSN Name DoB ZIP Job Illness Cause

1 c0,c1,c2,c3,c4,c5,c6 1/9 2/15 2/8 2/5 2/10 3/15 3/100 ZIP

2 c0,c1,c2,c5,c6 1/9 2/15 0 – 2/10 2/15 2/100 ZIP,Job
3 c0,c1,c2 1/9 2/15 0 – – 1/15 1/100 ZIP,Job,Name
4 c0 1/9 – 0 – – 0 0 ZIP,Job,Name,SSN
∅ – – 0 – – 0 0 ZIP,Job,Name,SSN

Fig. 3. An example of execution of the algorithm in Fig. 2

tio is particularly accurate, since the minimum set cover, as well as the mini-
mum hitting set, is not approximable within (1 − ε) ln |S|, for any ε > 0 unless
NP ⊂ Dtime(nlog log n) [12]. These results on the approximability of the min-
imum hitting set problem also apply to the weighted hitting set problem and,
consequently, to the minimal storage problem (Problem 1).

The classical approximation algorithm for the weighted minimum hitting set
problem [16] (with approximation ratio (1 + ln |S|)) follows a greedy strategy.
Figure 2 represents this approximation algorithm working on an instance of our
minimal storage problem (Problem 1). Initially, the set to solve of constraints
to be solved is initialized to C and F o is initialized to the empty set. At each
iteration of the while loop, the algorithm chooses the attribute a that does not
belong to F o and that maximizes the ratio between the number of constraints
in to solve in which it is involved, and a ’s size. (The non-weighted version of
the algorithm simply chooses the attribute that maximizes the number of non
solved constraints in which it is involved.) Hence, a is inserted into F o and
set to solve of non solved constraints is updated removing the constraints in
which the chosen attribute a is involved. The while loop terminates when all
constraints are solved (to solve=∅). Finally, F s is obtained as the complement
of F o with respect to R .

Example 3. Figure 3 represents the execution, step by step, of the algorithm
in Fig. 2 on relation Patient in Fig. 1(a), considering the confidentiality con-
straints in Fig. 1(b), and supposing size(SSN)=9, size(Name)=15, size(DoB)=8,
size(ZIP)=5, size(Job)=10, size(Illness)=15, and size(Cause)=100. The first
column in the table represents the set of constraints that are still unsolved; the
subsequent seven columns represent, for each attribute in R , the number of un-
solved constraints in which they are involved, divided by the attribute’s size; the
last column represents the attributes composing F o. Symbol – associated with
an attribute means that the attribute already belongs to F o and therefore it
does not need to be considered anymore. The solution computed by the algo-
rithm is F = 〈{SSN,Name,ZIP,Job}, {DoB,Illness,Cause}〉, which is a minimal
fragmentation for the considered example.



F o

tid SSN Name ZIP Job

1 123-45-6789 Alice 20051 Secretary
2 987-65-4321 Bob 22034 Student
3 147-85-2369 Carol 22039 Secretary
4 963-85-2741 David 20051 Lawyer
5 789-65-4123 Emma 22035 Student
6 123-65-4789 Fred 22034 Accountant

F s

tid DoB Illness Cause

1 80/02/11 asthma Dust allergy
2 85/05/22 fracture Car accident
3 73/07/30 carpal tunnel Secretary
4 75/11/26 hypertension Stress
5 90/03/15 asthma Student
6 68/08/07 hypertension Wrong diet

Fig. 4. Physical fragments corresponding to the fragmentation computed by the
approximation algorithm on the relation and confidentiality constraints in Fig. 1

5 Query Execution

The fragmentation of a relation R implies that only the two fragments F o and
F s, which are stored in place of the original relation to satisfy confidentiality
constraints, are used for query execution. However, since users authorized to
access the original relation R should not worry about whether or not R has
been fragmented, they formulate queries referring to R . Such queries need then
to be translated into equivalent queries operating on F o and/or F s.

To guarantee the reconstruction of the content of the original relation R
(lossless join property), at the physical level the two fragments F o and F s must
have a common key attribute [2]. We then assume F o and F s have a common
tuple id (attribute tid) that can be either: 1) the key attribute of the original
relation, if it is not sensitive, or 2) an attribute that does not belong to the
schema of the original relation R and that is added to F o and F s during the
fragmentation process. Figure 4 illustrates the physical fragments for the minimal
storage fragmentation of Example 3.

We consider select-from-where SQL queries of the form q=“select A
from R where C”, where A is a subset of the attributes in R , and C=

∧
i cnd i

is a conjunction of basic conditions of the form (ai op v), (ai op aj), or (ai in
{v1, . . . , vk}), with ai and aj attributes in R , {v,v1, . . . , vk} constant values in
the domain of ai, and op a comparison operator in {=, >, <, ≤, ≥, 6=}. In the
following, Attr(cnd i) is used to denote the attributes on which condition cnd i

operates. We now describe the query translation process.



5.1 Classification of Conditions

Condition C =
∧

i cnd i in the where clause of a query can be split in three
conditions, namely C o, C s, and C so, depending on the attributes involved in
the subexpression and that determine the party (client and/or storage server)
responsible for its evaluation.

– C o =
∧

i cnd i : Attr(cnd i) ⊆ F o is the conjunction of the conditions that
can be evaluated only by the client , independently from the server, since
they involve only attributes stored at the client.

– C s =
∧

i cnd i : Attr(cnd i) ⊆ F s is the conjunction of the conditions in C
that can be evaluated by the storage server , independently from the client,
since they involve only attributes stored at the remote server. Note that,
since the attributes stored at the server can be safely communicated to the
client, C s could also be evaluated by the client. However, this last option is
highly impractical and should be avoided, because it requires to send to the
client the projection over F s of the attributes Attr(cnd i), for each cnd i in
C s. This option would reduce the advantages of data outsourcing.

– C so =
∧

i cnd i : Attr(cnd i) ∩ F s 6= ∅ ∧ Attr(cnd i) ∩ F s 6= ∅ is the con-
junction of conditions in C of the form (ai op aj), where ai∈F o and aj∈F s

or viceversa. Therefore, these conditions require information from the server
and from the client to be evaluated, since they involve both attributes stored
at the client and attributes stored at the server. Note that the conditions in
C so involve attributes of F o that cannot be released to the external server,
since they would possibly violate confidentiality constraints. Therefore, C so

can be evaluated only by the client.

Example 4. Consider the fragmentation in Fig. 4 and the query retrieving the
names and dates of birth of people affected by asthma, living in area 22034 or
20051, and such that the cause of their illness is their job:

select Name, DoB
from Patient
where (ZIP in {22034, 20051}) and (Illness=“asthma”) and (Cause=Job)

C o = {ZIP in {22034, 20051}}, since attribute ZIP belongs to F o;
C s = {Illness = “asthma”}, since attribute Illness belongs to F s; and,
C so = {Cause = Job}, since attributes Job∈F o and Cause∈F s.

5.2 Query Evaluation Strategies

The evaluation process of a query q on R can follow two different strategies,
depending on the order in which conditions C o, C s, and C so are evaluated.
The Server-Client strategy evaluates C s at the server side and then evaluates
both C o and C so at the client side. The Client-Server strategy first evaluates
C o at the client side, evaluates C s at the server side, and finally checks C so at
the client side again. The left-hand side of Fig. 5 illustrates the two algorithms



Algorithm Example
Server-Client strategy

1. Let q = select A
from R
where C

2. Split C into subexpressions Co, Cs,
and Cso

3. Aqs:=(Fs∩A)∪{a∈Fs|∃cnd∈Cso,a∈Attr(cnd )}
4. Send qs = select tid, Aqs

from Fs

where Cs

to the storage server
5. Receive the result Rs of qs from the server
6. Execute qso = select A

from Fo join Rs

on Fo.tid=Rs.tid
where Co ∧ Cso

7. Return the result Rq of qso to the user

q = select Name, DoB
from Patient
where (ZIP in {22034,20051}) and

(Illness = “asthma”) and
(Cause = Job)

Co={ZIP in{22034,20051}};
Cs={Illness=“asthma”};Cso={Cause=Job}
Aqs = {DoB, Cause}
qs = select tid,DoB,Cause

from Fs

where Illness = “asthma”

qso = select Name, DoB
from Fo join Rs

on Fo.tid=Rs.tid
where (ZIP in {22034,20051})

and (Cause = Job)

Client-Server strategy

1. Let q = select A
from R
where C

2. Split C into subexpressions Co, Cs,
and Cso

3. Aqs:=(Fs∩A)∪{a∈Fs|∃cnd∈Cso,a∈Attr(cnd )}
4. Execute qo = select tid

from Fo

where Co

5. Send the result Ro of qo to the storage server
6. Send qs = select tid, Aqs

from Fs join Ro

on Fs.tid=Ro.tid
where Cs

to the storage server
7. Receive the result Rs of qs from the server
8. Execute qso = select A

from Fo join Rs

on Fo.tid=Rs.tid
where Cso

9. Return the result Rq of qso to the user

q = select Name, DoB
from Patient
where (ZIP in {22034,20051}) and

(Illness = “asthma”) and
(Cause = Job)

Co={ZIP in{22034,20051}};
Cs={Illness=“asthma”};Cso={Cause=Job}
Aqs = {DoB, Cause}
qo = select tid

from Fo

where ZIP in {22034,20051}

qs = select tid,DoB,Cause
from Fs join Ro

on Fs.tid=Ro.tid
where Illness = “asthma”

qso = select Name, DoB
from Fo join Rs

on Fo.tid=Rs.tid
where Cause = Job

Fig. 5. Algorithm for evaluating query q on fragmentation F and an example
of its execution

implementing the Server-Client and Client-Server strategies, respectively, exe-
cuted by the client for translating and evaluating q . In the following, we briefly
illustrate the working of the two algorithms.

– Server-Client strategy. The basic idea is that first the server evaluates the
conditions in C s on F s, and then the client refines the result by filtering out
the tuples that do not satisfy either C o or C so.
The corresponding algorithm receives in input the query q (step 1) to be



evaluated and returns the relation Rq resulting from its evaluation. The
algorithm then splits the condition C in the where clause in three subex-
pressions, C o, C s, and C so, on the basis of the attributes involved in the
basic conditions composing C (step 2). The algorithm identifies the set Aqs

of attributes that belong to F s, but that are necessary to the client for com-
pleting the evaluation of q , since either they belong to A or appear in a basic
condition in C so (step 3). The algorithm then defines, and sends to the stor-
age server, the query qs operating on F s and evaluating condition C s (step
4). The select clause of this query is composed of Aqs and attribute tid,
which is necessary to join the result of qs with F o. Then the server com-
putes and returns the result Rs of the evaluation of qs to the client (step 5).
The client defines and directly executes the query qso operating on the join
between Rs and F o and evaluating both C o and C so (step 6). The relation
resulting from the evaluation of query qso corresponds to the result of the
original query q , which is then returned to the user (step 7).

– Client-Server strategy. The basic idea is that first the client evaluates the
conditions in C o on F o, the server then refines the result by filtering out the
tuples that do not satisfy C s, and finally the client discards the tuples that do
not satisfy C so. The first three steps of the corresponding algorithm are the
same as for strategy Server-Client. After having split the conditions (step
2) and identified attributes Aqs (step 3), the client defines and executes
the query qo operating on F o and evaluating condition C o (step 4). The
select clause of this query is composed of attribute tid only, which is the
only attribute that can be communicated to the remote server (step 5) and
is needed to perform join. The algorithm sends to the storage server the
query qs, operating on the join between Ro and F s and evaluating condition
C s (step 6) for execution. The select clause of query qs (as for Server-
Client strategy) is composed of Aqs and attribute tid. The server computes
qs and returns its result Rs to the client (step 7). The client defines and
directly executes query qso operating on the join between Rs and F o and
evaluating C so (step 8). The relation resulting from the evaluation of query
qso, corresponding to the result of the original query q , is returned to the
requesting user (step 8).

Example 5. Consider relation Patient in Fig. 1(a), its fragmentation in Fig. 4,
and the query q introduced in Example 4. Aqs = {DoB,Cause}, since DoB belongs
to the select clause of the original query, while Cause is involved in a condition
in C so. The right-hand side of Fig. 5 illustrates the queries generated by the
algorithm for translating q in a set of equivalent queries operating on F , with
the Server-Client and Client-Server strategies.

The choice between the Server-Client and Client-Server strategies depends on
the possible leakage of information that the Client-Server strategy may cause.
If the storage server is supposed to know or can infer query q (e.g., because
the query is publicly available) the Client-Server strategy cannot be adopted
because the storage server can infer that the tuples in Ro are all and only the



tuples that satisfy C o, thus causing a leakage of information. As an example,
consider query q = “select Illness from Patient where Name = “Alice””
over relation Patient. If we adopt the Client-Server strategy, qo = “select tid
from F o where Name = “Alice”” returns only one tuple with tid=1. Knowing
q , the storage server can, from the result, reconstruct the sensitive associations
between Name and Illness and between Name and Cause (violating c1 and c2)
for the tuple with tid=1. To avoid information leakage, the client can add noise
to the result of query qo, by artificially inserting the id of some tuples that do
not satisfy C o. In this case, query qso should evaluate both C so and C o, to
remove from the final result the tuples artificially added to Ro.

If the storage server does not to know (and cannot infer) q or Ro is adequately
protected, both the Server-Client and Client-Server strategies can be adopted
without privacy violations. In this case, the choice between the two strategies
can only be based on performances. Following the criterion usually adopted
by distributed database systems, the most selective condition is evaluated first
(i.e., the sub-query with the smallest result is anticipated). Therefore, if C o is
more selective than C s, we adopt the Client-Server strategy and viceversa, if C s

is more selective than C o, we adopt the Server-Client strategy. Note that the
selectivity of query qo needs to consider also the possible noise added to Ro for
privacy purposes.

6 Related Work

Most of the research on the outsourced data paradigm assume the data to be en-
tirely encrypted, focusing on the design of techniques for the efficient execution
of queries (Database As a Service paradigm) [7, 14, 15, 19]. The first proposal sug-
gesting the combined use of fragmentation and encryption for enforcing privacy
constraints has been presented in [1]. This technique is based in the assumption
that data are split over two non communicating honest-but-curious database
servers and resorts to encryption any time two fragments are not sufficient for
enforcing confidentiality constraints. The model presented in [8, 9] removes the
limiting assumption that the two storage servers must not communicate, by
splitting the data over different fragments. The advantage is that only sensitive
attributes need to be encrypted, while sensitive associations can always be solved
via fragmentation.

In this paper, differently from previous approaches, we aim at solving con-
fidentiality constraints without resorting to encryption, by storing a portion of
the sensitive data at the client site. The main advantage of this novel solution is
that it simplifies the architecture and produces a system characterized by better
maintenance, avoiding the issues related with key management.

On another line of related work, classical proposals on the management of
queries in centralized and distributed systems [4, 6, 17] describe how efficient
query plans can be obtained. These solutions, however, cannot be applied in our
context, since they do not take into account possible information leakage to the
storage server, which can violate confidentiality constraints.



An affinity to the work presented in this paper can be found in [5, 11]. Al-
though these approaches share with our problem the common goal of enforcing
confidentiality constraints on data, they are concerned with retrieving a data
classification (according to a multilevel mandatory policy) that ensures sensitive
information is not disclosed and do not consider the fragmentation technique.

The problem of fragmenting relational databases has been addressed in the
literature [18], with the main goal of improving query evaluation efficiency. How-
ever, these approaches are not applicable to the considered scenario, since they
do not take into consideration privacy requirements.

7 Conclusions

The paper presented an approach for the management of relational data where
a honest-but-curious server is used to manage all the data that do not permit to
violate confidentiality constraints. Given the continuous increase in the size, va-
riety, and accessibility needs of data collections containing sensitive information,
together with the availability of novel network-enabled computing platforms, we
envision a significant domain for the application of the techniques presented here
or their extensions. We see an opportunity for extending this work to more gen-
eral databases and network applications, like Web-based management of email
and office automation tasks, remote backup and data outsourcing services, and
rentable computational services.
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