
Enforcing Dynamic Write Privileges

in Data Outsourcing�

Sabrina De Capitani di Vimercatia, Sara Forestia, Sushil Jajodiab,
Giovanni Livragaa, Stefano Paraboschic, Pierangela Samaratia

aDI - Università degli Studi di Milano, 26013 Crema, Italy
firstname.lastname@unimi.it

bCSIS - George Mason University, Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

cUniversità degli Studi di Bergamo, 24044 Dalmine, Italy
parabosc@unibg.it

Abstract

Users and companies are more and more resorting to external providers for
storing their data and making them available to others. Since data sharing
is typically selective (i.e., accesses to certain data should be allowed only to
authorized users), there is the problem of enforcing authorizations on the
outsourced data. Recently proposed approaches based on selective encryp-
tion provide convenient enforcement of read privileges, but are not directly
applicable for supporting write privileges.

In this paper, we extend selective encryption approaches to the support of
write privileges. Our proposal enriches the approach based on key derivation
of existing solutions and complements it with a hash-based approach for
supporting write privileges. Enforcement of write privileges and of possible
policy updates relies on the - controlled - cooperation of the external provider.
Our solution also allows the data owner and the users to verify the integrity
of the outsourced data.

Keywords: Data outsourcing, data protection, write authorization
enforcement, policy updates, data integrity.

�A preliminary version of this paper appeared under the title “Support for Write Priv-
ileges on Outsourced Data,” in Proc. of SEC 2012, Heraklion, Crete, June 2012 [1].

Preprint submitted to Computers & Security February 19, 2013

1. Introduction

Data outsourcing gives to end users and companies the opportunity to
benefit from the lower costs, higher availability, and larger elasticity that are
offered by the rapidly growing market of cloud providers. A major obstacle
to the adoption of cloud storage services is commonly recognized to be the
uncertainty and concerns about the correct management of security require-
ments. Users ask for robust guarantees about the confidentiality and integrity
of the outsourced data, and the research community has recently proposed
several techniques addressing this need (e.g., [2, 3, 4]). A common require-
ment is that data should remain confidential to both unauthorized users and
the external server storing them, which is considered honest-but-curious (i.e.,
trustworthy for managing resources but not for accessing their content). To
provide such confidentiality guarantee, existing proposals typically assume
data to be encrypted before being outsourced to the external server, and
they associate with the encrypted data additional indexing information that
can be used by the server to perform queries on encrypted data. For efficiency
reasons, encryption is based on symmetric keys. Earlier proposals typically
consider data to be encrypted with a single key, assuming either all users to
have complete visibility of the resources in the data collection, or the data
owner to mediate access requests to the data to enforce read authorizations.
More recent proposals, addressing the problem of allowing the users to have
selective visibility over the data (so that different sets of users be able to
access different resources), have proposed the application of a ‘selective en-
cryption’ approach. Intuitively, different keys are used to encrypt different
resources and users have visibility on subsets of resources depending on the
keys they know. Proper modeling and key derivation techniques have been
devised to ensure limited key management overhead in approaches based on
selective encryption.

While interesting and promising, all the solutions above assumed out-
sourced data to be read-only. In other words, the owner can modify resources
while all other users can only read them. Such an assumption can result re-
strictive in several scenarios where a data owner outsourcing the data to the
external server may also want to authorize other users (again selectively) to
write and update the outsourced resources. Like for read authorizations [5],
the enforcement of write privileges in outsourcing scenarios is complicated
by the fact that data are not under the direct control of their owner. In this
paper, we provide a solution for enforcing write authorizations on encrypted

2

outsourced data. Our solution is based on the same principles as previous
proposals, since it relies on encryption for enforcing read and write access
restrictions having efficiency and manageability as primary goal. In [1], we
presented an early version of our proposal for the enforcement of write privi-
leges over outsourced data. Here, we extend this approach with the support
of grant and revoke of write authorizations. We therefore provide a more gen-
eral solution, applicable to scenarios where static write authorizations may
result limiting as the sets of users authorized to modify the content of a re-
source can dynamically change over time. Our solution for enforcing updates
to write authorizations results appealing for its efficiency and flexibility, as
it avoids expensive re-keying and re-encryption operations. A key feature
is that it delegates the enforcement of updates on the write access control
policy to the external server, thus reducing the burden left at the data owner
side. Our proposal is complemented by a mechanism that allows both the
data owner and the authorized writers to verify the integrity of the resources
externally stored (i.e., to verify that resources have not been modified by
unauthorized users or by the server). We also extend the write integrity
check technique proposed in [1] to reflect updates in the write access policy.

The remainder of this paper is organized as follows. Section 2 introduces
the basic concepts on which our proposal is based, and presents the problem
of enforcing write privileges in outsourcing scenarios. Section 3 illustrates
our solution for enforcing write authorizations exploiting selective encryp-
tion. Section 4 discusses our approach for enforcing grant and revoke of
write privileges. Section 5 presents a mechanism for allowing the data owner
and writers to check the write operations executed and detect possible mis-
behaviors by the server or by the users. Section 6 extends the integrity check
mechanism to support updates to the write access policy. Section 7 discusses
related work. Finally, Section 8 gives our final remarks and concludes the
paper. The proofs of the theorems are reported in Appendix A.

2. Basic concepts and problem statement

Our work builds upon and extends a previous proposal [5] for confidential
data outsourcing. According to this proposal, a data owner outsourcing data
to a honest-but-curious server and wishing to provide selective visibility over
them to other users encrypts resources before sending them to the external
server for storage, and reflects the authorization policy in the encryption it-
self. Therefore, each resource o is encrypted with a key to be made known

3

only to the users authorized to read o, that is, to users who belong to the
access control list of o. Symmetric encryption is used and different keys are
assumed: one for each user and one for each group of users that corresponds
to an access control list. The adoption of a key derivation technique based on
public tokens allows users to access the resources of the system while having
to manage only one key. In further detail, each key ki is identified by a public
label li and, given keys ki and kj, token ti,j is computed as kj⊕h(ki,lj), with
⊕ the bitwise xor operator, and h a deterministic cryptographic function.
Token ti,j permits to derive key kj from the knowledge of key ki and public
label lj [6]. All keys with which resources are encrypted are then connected
in a key derivation graph. A key derivation graph is a DAG whose nodes
correspond to keys (of users and acls) and whose edges correspond to tokens
that ensure that each user can - via a sequence of public tokens - derive
the keys corresponding to the sets to which she belongs. Each user is then
communicated the key of the node representing herself in the graph. Each
resource is encrypted with the key corresponding to its acl. Encrypted re-
sources as well as the tokens are outsourced to the server. In particular,
for each resource o, the external server stores the encrypted version of the
resource together with the resource identifier and the label of the key with
which the resource is encrypted. A user authorized to read a resource (i.e.,
who belongs to its acl) can, via the tokens available on the server, derive the
key corresponding to the acl of the resource and decrypt it.

Example 2.1. Consider a system with four users U={A,B,C,D} and four
resources O={o1,o2,o3,o4}, whose access control lists are reported in Fig-
ure 1(a). Figure 1(b) illustrates the encrypted resources stored at the server,
where: r label is the label of the key used to encrypt the resource (i.e., the
key associated with its access control list); o id is the resource identifier; and
encr resource is the encrypted resource. Figure 1(c) illustrates the key deriva-
tion graph enforcing the authorizations. For the sake of readability, in the
key derivation graph we denote a key corresponding to a given acl U (i.e.,
a key with label lU and value kU) with U . Figure 1(d) illustrates the tokens
corresponding to the key derivation graph in Figure 1(c).

The encryption-based model described in this section nicely fits a sce-
nario in which the authorization policy regulates only read access privileges,
selectively restricting resource visibility to subsets of users. The support of
read accesses without consideration of write privileges may result however

4

o acl
o1 ABCD
o2 ABCD
o3 ABC
o4 BD

r label o id encr resource
lABCD 1 zKZlJxVcCC0g
lABCD 2 t9qdJqC7ImXU
lABC 3 AxalPH8v37Ts
lBD 4 xwfPJSn.MVqY

(a) (b)

�� ��
�� ��A

�����
����

����
�

�� ��
�� ��B ��

���
��

��
��

��
�

�� ��
�� ��ABC

����
���

�

�� ��
�� ��C

�������������� �� ��
�� ��ABCD

�� ��
�� ��D ���� ��

�� ��BD

��������������

from to val
lA lABC kABC⊕h(kA,lABC)
lB lABC kABC⊕h(kB ,lABC)
lB lBD kBD⊕h(kB ,lBD)
lC lABC kABC⊕h(kC ,lABC)
lD lBD kBD⊕h(kD,lBD)
lBD lABCD kABCD⊕h(kBD ,lABCD)
lABC lABCD kABCD⊕h(kABC ,lABCD)

(c) (d)

Figure 1: An example of four resources with their acls (a), encrypted resources (b), key
derivation graph (c), and tokens (d)

limiting in emerging data sharing scenarios (e.g., document sharing), where
the data owner may wish to grant other users the privilege to modify some
of her resources. Unfortunately, the keys associated with resources for regu-
lating the read accesses to them cannot be used for restricting write accesses
as well. As a matter of fact, we can imagine that in many situations the
set of users authorized to write a resource is different from (typically being
a subset of) the set of users authorized to read it. A straightforward solu-
tion for enforcing write authorizations might consist in simply outsourcing to
the external server the authorization policy (for write privileges) as is. The
server would then perform traditional (authorization-based) access control,
adopting user authentication and policy enforcement. This solution would
however present the main drawback of requesting a considerable management
overhead. Also, it would not be in line with the goal pursued by outsourcing
approaches, aimed at minimizing the server’s involvement and responsibility
in access control enforcement. Our goal is to enforce write privileges fol-
lowing the same spirit of the proposal in [5]: for this reason, we propose to
exploit selective encryption for the enforcement also of write authorizations.
As a matter of fact, having resources tied to access restrictions by means
of cryptographic solutions can provide a more robust and flexible control,
whose enforcement is less exposed to server misbehaviors. However, while
the encryption of a resource with a key known to all and only the users au-

5

thorized to read it suffices for enforcing read authorizations, enforcement of
write privileges requires cooperation from the external server. In the follow-
ing sections, we will describe an approach, based on selective encryption, for
the effective outsourcing to the external server of the enforcement of both
read and write privileges, as well as of grant and revoke operations.

3. Authorization policy

The basic idea of our approach for the enforcement of both read and write
privileges consists in associating each resource with a write tag defined by the
data owner, and in adopting selective encryption techniques to regulate both
access to resource contents and to their write tags. Our intuition is to encrypt
the tag of a given resource with a key known only by the users authorized
to write the resource and by the external server. In this way, only the server
and authorized writers will have access to the plaintext write tag of each
resource. The server will then accept a write operation on a resource when
the requesting user shows knowledge of the corresponding write tag. Since
the key used for encrypting the write tag has to be shared by the server
and the writers, we leverage on the underlying structure already in place
for regulating the necessary read operations. In this section, we illustrate
our key derivation structure for managing the encryption keys of the system
(Section 3.1), and we discuss how to use it for enforcing read and write access
restrictions (Section 3.2).

3.1. Key derivation structure

Elaborating on the approach in [5], and adapting it to our context, we
introduce a set-based key derivation graph as follows.

Definition 3.1 (Set-based key derivation graph). Let U be a set of
users and U⊆2U be a family of subsets of users in U such that ∀u∈U , {u}∈U.
A set-based key derivation graph over U and U is a triple 〈K,L,T 〉, with K
a set of keys, L the set of corresponding labels, and T a set of tokens, such
that:

1. ∀U∈U, there exist a derivation key kU∈K;

2. ∀u∈U , ∀U∈U\{u} s.t. u∈U , there exists a token t{u},U or a sequence
〈t{u},Ui

, . . . , tUj ,U〉 of tokens in T , with tc,d following ta,b in the sequence
if b = c.

6

Definition 3.1 ensures that, for each set U∈U of users, there exists a
derivation key, and that each user u in the system can derive (through either
a single token or a chain of tokens) all the derivation keys of all the groups
U∈U to which she belongs.

Since our approach requires each resource to be associated with a write tag
that must be encrypted with a key shared by the server and the authorized
writers of the resource, we extend the set-based key derivation graph in
Definition 3.1 with the external server. However, since the server cannot
access the plaintext of the outsourced resources, it cannot be treated the
same way as authorized users (i.e., considering it as an additional user).
We then define a key derivation structure by extending the set-based key
derivation graph to include also the keys that will be shared with the server,
and will be used to encrypt the write tags for enforcing write privileges
(see Section 3.2). These additional keys are defined in such a way that
authorized users can compute them applying a secure hash function hs to
a key they already know (or can derive via a sequence of tokens), while
the server can derive them through a token specifically added to the key
derivation structure. Compared with the set-based key derivation graph in
Definition 3.1, in the key derivation structure we also distinguish between
two kinds of keys (possibly associated with each set of users): derivation keys
and access keys . Access keys are actually used to encrypt resources, while
derivation keys are used to provide the derivation capability via tokens, that
is, tokens can be defined only with derivation keys as starting points. Each set
of users in U is therefore associated with a derivation key k and, when needed,
also with an access key ka obtained by applying a secure hash function ha to
k (i.e., ka=ha(k)). The rationale for this evolution is to distinguish the two
roles associated with keys, namely: enabling key derivation (by applying the
corresponding tokens) and enabling access to resources.

Formally, a key derivation structure is defined as follows.

Definition 3.2 (Key derivation structure). Let U be a set of users, S
be an external server, U ⊆ 2U be a family of subsets of users in U such that
∀u∈U , {u}∈U, Us and Ua be two subsets of U, and 〈K′,L′,T ′〉 be a set-based
key derivation graph over U and U. A key derivation structure implied by Us

and Ua over 〈K′,L′,T ′〉 is a triple 〈K,L,T 〉, with K a set of keys, L the set
of corresponding labels, and T a set of tokens, such that:

1. K = K′ ∪ {kS} ∪ {kU∪{S}=hs(kU) | U∈Us} ∪ {ka
U=ha(kU) | U∈Ua},

with hs and ha two secure hash functions;

7

2. T = T ′ ∪ {tS,U∪{S} | U∈Us}.

A key derivation structure therefore extends a set-based key derivation
graph by including: i) a derivation key kS assigned to the server; ii) a key
kU∪{S} shared by the users in U and the server, for each set U of users in Us;
iii) an access key ka

U shared by the users in U , for each set U of users in Ua;
and iv) a token tS,U∪{S} that allows the server to derive key kU∪{S} starting
from its key kS , for each set U of users in Us. For each set U of users in Us,
both a derivation key kU and a key kU∪{S} shared with the server belong to
K. Analogously, for each set U of users in Ua, both a derivation key kU and
an access key ka

U belong to the set K of keys in the key derivation structure.
Figure 2 illustrates function Define Key Derivation Structure that

builds a key derivation structure. The function receives as input a set U of
users, an external server S, three families U, Us, and Ua of subsets of users in
U , with Us⊆U and Ua⊆U, and two secure hash functions hs and ha. It returns
the key derivation structure 〈K,L,T 〉 implied by Us and Ua over 〈K′,L′, T ′〉
(Definition 3.2). The function operates in two steps: the first step defines the
set-based key derivation graph over U and U; the second step extends the key
derivation graph with the server, for defining the key derivation structure of
interest. In the first step, the function leverages on the algorithms in [5] to
define the set-based key derivation graph 〈K′,L′,T ′〉. To this aim, for each set
U∈U of users the function generates a derivation key and the corresponding
label, and inserts them into the sets K′ of keys and L′ of labels, respectively
(lines 5–8). The function then defines a set T ′ of tokens such that, for
each user u in the set U , there is a token (or a sequence of tokens) in T ′

that permits to derive, starting from ku , all those keys kU associated with
a set U∈U of users with u∈U (lines 10–12). In the second step, function
Define Key Derivation Structure extends the set-based key derivation
graph computed in the previous step to obtain the key derivation structure
of interest. To this aim, the function first generates a derivation key kS
for the server and the corresponding label lS , and inserts them into sets
K and L, respectively (lines 14–16). The set T of tokens is initialized to
the set T ′ of tokens in the set-based key derivation graph (line 17). For
each set U of users in Us, the function computes key kU∪{S} (shared by
the server and U) applying secure hash function hs to kU , generates the
corresponding label, and inserts them into the set K of keys and into the
set L of labels in the key derivation structure, respectively (lines 18–22).
The set T of tokens is then updated by inserting a token that permits to

8

DEFINE KEY DERIVATION STRUCTURE(U , S, U, Us, Ua, hs, ha)

/* Input U : users of the system */
/* S : external server */
/* U ⊆ 2U : family of subsets of users in U */
/* Us ⊆ U, Ua ⊆ U : subsets of U */
/* hs, ha : secure hash functions */

/* Output〈K,L,T 〉 : key derivation structure implied by Us and Ua over 〈K′,L′,T ′〉 */

1: /* Step 1: define the set-based key derivation graph */
2: K′ := ∅
3: L′ := ∅
4: T ′ := ∅
5: for each U∈U do /* generate a derivation key for each U∈U (C1 in Def. 3.1) */
6: generate a derivation key kU and a label lU
7: K′ := K′ ∪ {kU }
8: L′ := L′ ∪ {lU }
9: /* define a set of tokens s.t. ∀U∈U and ∀u∈U , kU is derivable from ku iff u∈U (C2 in Def. 3.1) */
10: for each Uj∈U, |Uj | > 1 do
11: coverj := {U1,. . . ,Un ∈ U |

⋃n
i=1Ui=Uj}

12: T ′ := T ′ ∪ {tUi,Uj
=kUj

⊕h(kUi
,lUj

) | Ui∈coverj}
13: /* Step 2: define a key derivation structure */
14: generate a key kS and a label lS /* generate a key for the external server (C1 in Def. 3.2) */
15: K := K′ ∪ {kS}
16: L := L′ ∪ {lS}
17: T := T ′
18: for each U∈Us do /* for each U∈Us, compute kU∪{S} as the result of hs over kU (C1 in Def. 3.2) */
19: kU∪{S} := hs(kU)
20: generate a label lU∪{S}
21: K := K ∪ {kU∪{S}}
22: L := L ∪ {lU∪{S}}
23: T := T ∪ {tS,U∪{S}=kU∪{S}⊕h(kS ,lU∪{S})} /* token from kS to kU∪{S} (C2 in Def. 3.2) */
24: for each U∈Ua do /* for each U∈Ua, compute kaU as the result of ha over kU (C1 in Def. 3.2) */
25: kaU := ha(kU)
26: generate a label laU
27: K := K ∪ {kaU }
28: L := L ∪ {laU }
29: return(〈K,L,T 〉)

Figure 2: Function that defines a key derivation structure

derive kU∪{S} from kS for each set U of users in Us (line 23). The function
generates an access key ka

U (and the corresponding label) for each set U of
users in Ua by applying secure hash function ha to the derivation key kU
associated with the same set of user, and inserts the key and the label into
K and L, respectively (lines 24–28). The function terminates returning the
resulting key derivation structure 〈K,L,T 〉 (line 29). The following theorem
formally shows that function Define Key Derivation Structure correctly
computes a key derivation structure.

9

o r[o] w[o]
o1 ABCD BD
o2 ABCD BD
o3 ABC AC
o4 BD B

r label w label o id encw tag encr resource
lABCD lBDS 1 α zKZlJxVcCrC0g
lABCD lBDS 2 β t9qdJqC7AImXU
lABC lACS 3 γ AxalPH8Kv37Ts
lBD lBS 4 δ xwfPJSLn.MVqY

(a) (b)

�� ��
�� ��A ���� ��

�� ��AC ��

��

�� ��
�� ��ABC

���
��

��
��

��
��

�� ��
�� ��B ��

����������������

���
��

��
��

��
� BS ACS

S

								 ��

����������������
BDS �� ��

�� ��ABCD

�� ��
�� ��C

 �� ��
�� ��BD

�����������������

��

�� ��
�� ��D

								

from to val
lA lAC kAC⊕h(kA,lAC)
lB lABC kABC⊕h(kB,lABC)
lB lBD kBD⊕h(kB ,lBD)
lC lAC kAC⊕h(kC ,lAC)
lD lBD kBD⊕h(kD ,lBD)
lAC lABC kABC⊕h(kAC ,lABC)
lBD lABCD kABCD⊕h(kBD ,lABCD)
lABC lABCD kABCD⊕h(kABC ,lABCD)
lS lBS kBS⊕h(kS ,lBS)
lS lACS kACS⊕h(kS ,lACS)
lS lBDS kBDS⊕h(kS ,lBDS)

(c) (d)

Figure 3: An example of read and write acls (a), encrypted resources (b), key derivation
structure (c), and tokens (d)

Theorem 3.1 (Correctness of procedure Define Key Derivation Structure).
Let U be a set of users, S be an external server, U⊆2U be a family of subsets
of users in U such that ∀u∈U , {u}∈U, and Us and Ua be two subsets of U.
Triple 〈K,L,T 〉 computed by function Define Key Derivation Structure
in Figure 2 is a key derivation structure (Definition 3.2).

Proof. See Appendix A.

Example 3.1. Consider a system with four users U={A,B,C,D}, a
family U={A,B,C,D,AC,BD,ABC,ABCD} of subsets of users, and
two subsets Us={B,AC,BD} and Ua={BD,ABC,ABCD} of U. Fig-
ure 3(c) illustrates the key derivation structure computed by function
Define Key Derivation Structure in Figure 2. In the figure, nodes
drawn with a continuous line represent derivation keys, and nodes drawn
with a dotted line represent keys shared with the external server (for the sake
of readability, access keys are not reported in the figure). Continuous edges
represent tokens, and dotted edges correspond to hash-based derivations com-
puted via secure hash function hs.

10

3.2. Access control enforcement

We now illustrate our proposal for enforcing both read and write access
restrictions. Each resource o is associated with two (possibly different) access
control lists: i) a read access list r[o] reporting the set of users authorized to
read o, and ii) a write access list w[o] reporting the set of users authorized
to write o. Consistently with most real-world scenarios, we assume the users
authorized to write a resource to also read it, that is, ∀o ∈O: w[o]⊆r[o].

Read authorizations are enforced through selective encryption. Each re-
source o in the set O of resources is then encrypted with the access key
corresponding to the set of users in its read access list r[o], which is known
or can be derived by all and only the users authorized to view the resource
content.

Enforcement of write authorizations, as mentioned at the beginning of
this section, relies on the definition of a write tag for each resource and on
the cooperation with the external server. Each resource o∈O is associated
with a write tag tag[o], defined by the data owner using a secure random
function to ensure independence of the tag from both the resource identifier
and its content. To guarantee that only the server S and the set w[o] of
authorized writers know the plaintext value of the write tag of resource o,
tag[o] is encrypted with a key that is known or can be derived only by the
users in w[o] and by the server.

Each resource o∈O is stored at the external server in encrypted form,
together with the following metadata.

• r label: label of the key with which the resource is encrypted, which
is the access key of the set r[o] of users authorized to read o (i.e., lar [o]).

• w label: label of the key shared by the set w[o] of users authorized to
write o and the server S (i.e., lw [o]∪{S}).

• encw tag: write tag tag[o] of resource o, which is used by the server to
enforce restrictions on write privileges. The tag is encrypted with the
key identified by the label in w label (i.e., E(tag[o], kw [o]∪{S}), where
E is a symmetric encryption function computed over tag[o] with key
kw [o]∪{S}).

• encr resource: encrypted version of resource o, encrypted with the
access key identified by the label in r label (i.e., E(o, ka

r [o])).

11

INITIALIZE SYSTEM(U , O, S, hs, ha)

/* Input U : users of the system */
/* O : resources of the system */
/* S : external server */
/* hs, ha : secure hash functions */

1: /* Step 1: define the key derivation structure */
2: Us :=

⋃
o∈Ow[o]

3: Ua :=
⋃

o∈Or[o]

4: U := Us ∪ Ua ∪ {{u} | u∈U}
5: 〈K,L,T 〉 := Define Key Derivation Structure(U , S, U, Us, Ua, hs, ha)
6: /* Step 2: distribute keys */
7: for each u∈U do /* communicate derivation keys to users */
8: send ku to u
9: send kS to S /* communicate the derivation key to the server */
10: /* Step 3: outsource resources and tokens */
11: Ok := ∅ /* outsourced relation */
12: for each o∈O do /* define the outsourced relation */
13: create a new tuple t
14: t[r label] := lr[o]
15: t[w label] := lw[o]∪{S}
16: t[o id] := Id(o)
17: randomly generate a value for tag[o]
18: t[encw tag] := E(tag[o],kw[o]∪{S})
19: t[encr resource] := E(o,kr[o])

20: insert t into Ok

21: send relation Ok to the server
22: token := ∅ /* relation storing public tokens */
23: for each ti,j∈T do
24: create a new tuple t
25: t[from] := li
26: t[to] := lj
27: t[val] := ti,j
28: insert t into token
29: send relation token to the server

Figure 4: Procedure that enforces the access control policy defined by the data owner
before outsourcing resources

Given the set U of users and the set O of resources in the system, where
each resource is associated with read and write access control lists as men-
tioned above, the data owner must compute keys and tokens composing the
key derivation structure before outsourcing resources in O. To this aim, it
calls procedure Initialize System in Figure 4, which in turn calls function
Define Key Derivation Structure in Figure 2 to properly define the key
derivation structure. The procedure receives as input the set U of users and
the set O of resources in the system, an external server S, and two secure
hash functions hs and ha. The procedure first needs to define three families
U, Us, and Ua of subsets of users in U . U corresponds to the set of groups of

12

users whose keys must be represented in the system for the correct enforce-
ment of the authorizations. It then includes the singleton sets {u} of users
u in U , and the sets U of users representing read and write access lists (r[o]
and w[o], respectively) of resources o in O. Us is the subset of U representing
those sets of users that have to share a key with the external server. It then
includes all the sets of users corresponding to the write access lists w[o] of
resources o in O. Ua is the subset of U representing those sets of users for
which an access key needs to be defined. It then includes all the sets cor-
responding to the read access lists r[o] of resources o in O (lines 2–4). The
procedure then calls function Define Key Derivation Structure, which
returns a key derivation structure (line 5). Finally, the procedure:

1. communicates to each user u derivation key ku, and to the external
server derivation key kS (lines 7–9);

2. computes and stores at the external server the encrypted resources and
the associated metadata (lines 11–21);

3. stores at the external server all the tokens in the key derivation struc-
ture (i.e., tokens in T) as a set of triples of the form 〈li, lj, ti,j〉 indicating
that the key with label lj can be directly derived from the key with label
li through token ti,j (lines 22–29).

Example 3.2. Consider a system with four users U={A,B,C,D} and four
resources O={o1,o2,o3,o4}, and assume read and write acls of resources to be
as in Figure 3(a) (read acls are the same as in Example 2.1). Figure 3(c)
illustrates the key derivation structure computed as described in Example 3.1.
Figure 3(b) and Figure 3(d) illustrate the encrypted resources and associated
metadata, and the tokens outsourced to the external server, respectively.

It is easy to see that our approach guarantees: i) correct read autho-
rization enforcement ; ii) correct write authorization enforcement ; and iii)
write control by the server. Read authorization enforcement is guaranteed
as each resource o∈O is encrypted with an access key (i.e., ka

r [o]) that only

authorized readers in r[o] know or can derive. In fact, each user u can com-
pute any access key ka

U such that u∈U by applying hash function ha to
derivation key kU , which u knows or can derive as she belongs to U . Write
authorization enforcement is guaranteed since the write tag tag[o] of each
resource o∈O is encrypted with a key (i.e., kw [o]∪{S}) that only authorized
writers in w[o] (and the server) can derive. Also, the server is assumed to be

13

honest-but-curious and therefore not interested in tampering with resources
(see Sections 5 and 6). Write control by the server is guaranteed since the
server has visibility over the write tag of all resources, which is encrypted
with a key that the server can directly derive.

The correct enforcement of the authorization policy is formally proved by
the following theorem.

Theorem 3.2 (Correct enforcement of authorizations). Let U be a
set of users, S be an external server, O be a set of resources such that ∀o∈O
r[o] and w[o] are the read and write access lists of o, respectively. Our access
control system satisfies the following conditions:

1. ∀u ∈ U and ∀o ∈ O, u can decrypt encr resource[o] iff u ∈ r [o] (read
authorization enforcement);

2. ∀u ∈ U and ∀o ∈ O, u can decrypt encw tag[o] iff u ∈ w [o] (write
authorization enforcement);

3. ∀o ∈ O, S can decrypt encw tag[o] (write control).

Proof. See Appendix A.

4. Policy updates

Policy updates must be managed with special care in our scenario, since
they might require expensive re-encryption and/or key re-distribution op-
erations by the data owner, thus limiting the advantages of data outsourc-
ing. The problem of granting and revoking read authorizations with lim-
ited overhead for the data owner has been already investigated, and we can
therefore assume to solve it by using the proposal in [5], which is based on
over-encryption. In this section, we will focus on the management of write
privileges, with the goal of outsourcing the enforcement of grant and revoke
operations to the external server. Since both grant and revoke operations
translate into the insertion of keys (and tokens) in the key derivation struc-
ture, we first illustrate how to manage this operation (Section 4.1). We then
describe how grants and revokes of privileges can be enforced to correctly
reflect updates in the write authorizations (Section 4.2).

14

GLOBAL VARIABLES

U : users of the system
S : external server
〈K,L,T 〉 : key derivation structure
hs, ha : secure hash functions

GET KEY(U)

1: let kU be the key in K associated with U
2: if kU = NULL then /* if K does not include a derivation key for U */
3: generate kU and label lU
4: kaU := ha(kU) /* compute kaU as the result of ha over kU */
5: generate a label laU
6: K := K ∪ {kU , kaU }
7: L := L ∪ {lU , laU }
8: let U ′ be the family of subsets of 2U such that ∀U ∈ U ′, kU ∈ K
9: cover := {U1,. . . ,Un ⊆ U ′ |

⋃n
i=1Ui=Uj}

10: for each Ui ∈cover do
11: tUi,U := kU⊕h(kUi

,lU)
12: T := T ∪ {tUi,U}
13: create a new tuple t
14: t[from] := lUi

15: t[to] := lU
16: t[val] := tUi,U

17: insert t into token /* at the server side */
18: return(kU)

GET SHARED KEY(U)

19: let kU∪{S} be the key in K shared by U and S
20: if kU∪{S} = NULL then /* if K does not include a key shared by U and S */
21: kU := Get Key(U) /* retrieve or create the derivation key associated with U */
22: kU∪{S} := hs(kU) /* compute kU∪{S} as the result of hs over kU */
23: generate a label lU∪{S}
24: K := K ∪ {kU∪{S}}
25: L := L ∪ {lU∪{S}}
26: T := T ∪ {tS,U∪{S}=kU∪{S}⊕h(kS ,lU∪{S})} /* insert into T the token from kS to kU∪{S} */
27: create a new tuple t
28: t[from] := lS
29: t[to] := lU∪{S}
30: t[val] := tS,U∪{S}
31: insert t into token /* at the server side */
32: return(kU∪{S})

Figure 5: Pseudocode of functions Get Key and Get Shared Key

4.1. Updates to the key derivation structure

The basic operations on the key derivation structure necessary to manage
grant and revoke operations consist in the retrieval/insertion of derivation
and access keys.

Function Get Key in Figure 5 receives as input a set U⊆U of users
and returns the derivation key associated with it. The function first checks

15

whether the set K of keys in the key derivation structure already includes a
derivation key for U (line 1). If this is not the case, the function generates a
new derivation key for the set of users together with its label, and computes
the corresponding access key together with its label. It then inserts keys
and labels in the sets K and L of keys and labels of the key derivation
structure (lines 2–7). The function then updates the set T of tokens in the
key derivation structure by inserting the tokens necessary to guarantee that
each user u in U can derive kU from her key ku (lines 8–12). The function
then updates relation token at the server side accordingly (lines 13–17).
Finally, the function returns derivation key kU (line 18).

Function Get Shared Key in Figure 5 receives as input a set U⊆U
of users and returns the key shared by the server and U . The function first
checks whether the set K of keys already includes the key of interest (line 19).
If this is not the case, the function first retrieves the derivation key associated
with the set U of users by calling function Get Key over U (lines 20–21).
It then computes the hash of kU through secure hash function hs, obtaining
kU∪{S} (line 22). The function then generates the corresponding label and
inserts the key into K and the label into L (lines 23–25). The function inserts
into T a token that permits the server to derive kU∪{S} from kS (line 26).
The function then updates relation token at the server side accordingly
(lines 27–31). Finally, the function returns kU∪{S} (line 32).

Example 4.1. Consider the key derivation structure of Figure 3(c), and as-
sume that a key has to be shared by the server S and the set ABD of users.
Figure 6 illustrates the key derivation structure, and the corresponding set
of tokens, resulting from the call to function Get Shared Key in Figure 5
over ABD. Since K does not include a key shared by S and ABD, func-
tion Get Shared Key calls function Get Key over ABD, which inserts
derivation key kABD and access key ka

ABD into K, labels lABD and laABD into
L, and tokens tA,ABD and tBD,ABD into T . It returns the derivation key
of ABD. Function Get Shared Key then computes key kABDS by apply-
ing secure hash function hs to kABD, inserts kABDS into K, the correspond-
ing label lABDS into L, and token tS,ABDS into T . In Figure 6(b) and in
the following figures, we denote tokens inserted by functions Get Key and
Get Shared Key with a bullet •.

16

�� ��
�� ��A ��

�
��

��
��

��
��

��
��

��
��

��
��

�� ��
�� ��AC ��

��

�� ��
�� ��ABC

���
��

��
��

��
��

�� ��
�� ��B ��

����������������

���
��

��
��

��
� BS ACS

S

								

��

 ��

����������������
BDS �� ��

�� ��ABCD

�� ��
�� ��C

 �� ��
�� ��BD

����
���

�

�����������������

��

ABDS

�� ��
�� ��D

								 �� ��
�� ��ABD

��

from to val
lA lAC kAC⊕h(kA,lAC)
lA lABD kABD⊕h(kA,lABD) •
lB lABC kABC⊕h(kB,lABC)
lB lBD kBD⊕h(kB ,lBD)
lC lAC kAC⊕h(kC ,lAC)
lD lBD kBD⊕h(kD ,lBD)
lAC lABC kABC⊕h(kAC ,lABC)
lBD lABD kABD⊕h(kBD ,lABD) •
lBD lABCD kABCD⊕h(kBD ,lABCD)
lABC lABCD kABCD⊕h(kABC ,lABCD)
lS lBS kBS⊕h(kS ,lBS)
lS lACS kACS⊕h(kS ,lACS)
lS lBDS kBDS⊕h(kS ,lBDS)
lS lABDS kABDS⊕h(kS ,lABDS) •

(a) (b)

Figure 6: Key derivation structure (a) and tokens (b) after the insertion of key kABDS in
the key derivation structure in Figure 3(c)

4.2. Grant and revoke

Despite effective for enforcing changes to read authorizations, over-
encryption falls short when it is necessary to grant or revoke write privileges.
In fact, in a worst case scenario, users are not oblivious (i.e., they have the
ability to store and keep indefinitely all information they have been entitled
to access), and the users in the write access list of a resource have knowl-
edge of the value of the corresponding write tag. These users can therefore
exploit such knowledge to modify the resource even when they lost the write
privilege. To illustrate, consider a resource o with write access list w[o] and
assume that, at a given point in time, the data owner revokes from user
u∈w[o] the write privilege for o. To enforce the revoke operation, write tag
tag[o] should be encrypted with a key known only to the users in w[o]\{u}.
However, since u was previously included in w[o] she might know the plain-
text value of the write tag tag[o]. Even without being able to decrypt the
encrypted write tag sent by the server, user u would then still be able to
correctly reply to the challenge of the server, thus violating the write access
policy defined by the data owner. For instance, consider the key derivation
structure in Figure 3(c), and suppose that the data owner revokes the write
privilege over resource o2 from user B. If B already knows the plaintext
value of tag[o2], she can still answer the challenge of the server, and then
improperly modify o2. Since this problem depends on previous knowledge
of the revoked user and not on her ability to decrypt the write tag received

17

DATA OWNER SERVER

GRANT(u, o)

1: if o
∈r[o] then grant u read access to o
2: w[o] := w[o]∪{u}
3: kw[o]∪{S} := Get Shared Key(w[o])
4: let lw[o]∪{S} be the label of key kw[o]∪{S}
5: Encrypt Tag(Id(o), lw[o]∪{S})

ENCRYPT TAG(id, lnew)

1: let t be the tuple in Ok s.t. t[o id]=id
2: let told be the tuple in token s.t.

told[from]=lS and told[to]=t[w label]
3: let tnew be the tuple in token s.t.

tnew [from]=lS and tnew [to]=lnew

4: kold := told[val] ⊕ h(kS ,t[w label])
5: knew := tnew [val] ⊕ h(kS ,lnew)
6: tag := D(t[encw tag],kold)
7: t[encw tag] := E(tag ,knew)
8: t[w label] := lnew

REVOKE(u, o)

6: w[o] := w[o]\{u}
7: kw[o]∪{S} := Get Shared Key(w[o])
8: let lw[o]∪{S} be the label of key kw[o]∪{S}
9: Create New Tag(Id(o), lw[o]∪{S})

CREATE NEW TAG(id, lnew)

9: let t be the tuple in Ok s.t. t[o id]=id
10: let tnew be the tuple in token s.t.

tnew [from]=lS and tnew [to]=lnew

11: knew := tnew [val] ⊕ h(kS ,lnew)
12: randomly generate a value tag for a write tag
13: t[encw tag] := E(tag ,knew)
14: t[w label] := lnew

Figure 7: Pseudocode of the procedures operating at the data owner and at the server
side to grant and revoke write privileges

from the server, it is necessary to associate a fresh write tag with the revoked
resource to effectively enforce the policy change.

We now illustrate in details how write authorizations can be granted and
revoked upon decision of the data owner.

Grant. We consider the case of the data owner granting user u write privilege
over resource o. Note that, if u is not a reader of o, the access control policy
is first modified granting u read access to o. To ensure that write requests
by u are accepted by the server, the data owner must encrypt the write tag
associated with o with a key known to: the server, the authorized writers in
w[o], and the user u who is being granted the write privilege. In other words,
tag[o] must be encrypted with a key shared by the server and the new set
w[o]∪{u} of writers. Clearly, if the key derivation structure does not include
a key known by the server and by all and only the users in w[o]∪{u}, then
the data owner must first update the key derivation structure to include it.

Procedure Grant in Figure 7 receives as input a user u and a resource o
and grants u the privilege of modifying o. The procedure first updates the
read access list (if necessary) and the write access list of the resource (lines 1–
2). It then retrieves the derivation key (and the corresponding label) that
will be used to encrypt the write tag of the resource (i.e., the key shared by

18

the authorized writers of o, including u, and the server) by calling function
Get Shared Key on the updated write access list of the resource (lines 3–4).
The procedure then calls procedure Encrypt Tag, which is executed by the
server, to update the representation of the resource at the server side (line 5).
Procedure Encrypt Tag in Figure 7 receives as input a resource identifier
id and a label lnew and encrypts the write tag of the resource identified by id
with the key identified by lnew. To this purpose, it first determines the tuple
t in the outsourced table representing resource o with identifier id (line 1). It
then finds the token that permits to derive key kold with which t[encw tag]
is currently encrypted (i.e., the token from lS to t[w label]), and the token
that permits to derive key knew with which the write tag must be encrypted
to reflect the policy change (i.e., the token from lS to lnew) (lines 2–3). The
procedure then uses these tokens to derive both kold and knew (lines 4–5).
It decrypts t[encw tag] with kold, re-encrypts the write tag with knew, and
updates t[w label], setting it to lnew to reflect the policy update (lines 6–8).

Example 4.2. Consider the key derivation structure, outsourced resources,
and tokens in Figure 3 and assume that the data owner grants A write priv-
ilege over o2 (i.e., w[o2]=w[o2]∪{A}=ABD). Since the key derivation struc-
ture includes neither a key shared by ABD and S, nor a derivation key for
ABD, the structure is first updated to accommodate the new keys (see Exam-
ple 4.1). Then, the write tag of o2 is re-encrypted by the server with kABDS .

Assume now that the data owner grants D write privilege over o4 (i.e.,
w[o4]=w[o4]∪{D}=BD). Since the key derivation structure already contains
a key for the updated write access list of o4, no update is necessary to the
key derivation structure. Hence, the only operation performed to enforce this
authorization update consists in encrypting the write tag of o4 with key kBDS .
Figure 8 illustrates the read and write access lists, the encrypted resources,
the key derivation structure, and the tokens after these two grant operations.

Revoke. We consider the case of the data owner revoking from user u the
write privilege over resource o. To ensure that u cannot exploit her knowl-
edge of the plaintext write tag tag[o] of the revoked resource to perform
unauthorized write operations on o, a new write tag must be defined for o,
whose value must be independent from the former value of tag[o] (i.e., it
has to be chosen adopting a secure random function). Since the server is
authorized to know the write tag of each and every resource in the system to

19

o r[o] w[o]
o1 ABCD BD
o2 ABCD ABD
o3 ABC AC
o4 BD BD

r label w label o id encw tag encr resource
lABCD lBDS 1 α zKZlJxVcCrC0g
lABCD lABDS 2 ε t9qdJqC7AImXU
lABC lACS 3 γ AxalPH8Kv37Ts
lBD lBDS 4 ζ xwfPJSLn.MVqY

(a) (b)

�� ��
�� ��A ��

�
��

��
��

��
��

��
��

��
��

��
��

�� ��
�� ��AC ��

��

�� ��
�� ��ABC

���
��

��
��

��
��

�� ��
�� ��B ��

����������������

���
��

��
��

��
� BS ACS

S

								

��

 ��

����������������
BDS �� ��

�� ��ABCD

�� ��
�� ��C

 �� ��
�� ��BD

����
���

�

�����������������

��

ABDS

�� ��
�� ��D

								 �� ��
�� ��ABD

��

from to val
lA lAC kAC⊕h(kA,lAC)
lA lABD kABD⊕h(kA,lABD) •
lB lABC kABC⊕h(kB,lABC)
lB lBD kBD⊕h(kB ,lBD)
lC lAC kAC⊕h(kC ,lAC)
lD lBD kBD⊕h(kD ,lBD)
lAC lABC kABC⊕h(kAC ,lABC)
lBD lABD kABD⊕h(kBD ,lABD) •
lBD lABCD kABCD⊕h(kBD ,lABCD)
lABC lABCD kABCD⊕h(kABC ,lABCD)
lS lBS kBS⊕h(kS ,lBS)
lS lACS kACS⊕h(kS ,lACS)
lS lBDS kBDS⊕h(kS ,lBDS)
lS lABDS kABDS⊕h(kS ,lABDS) •

(c) (d)

Figure 8: Read and write acls (a), encrypted resources (b), key derivation structure (c),
and tokens (d) of Figure 3 after B is granted write permission over o2 and D is granted
write permission over o4

correctly enforce write privileges, the data owner can delegate to the external
server both the generation and encryption with the correct key of the write
tag of resource o. In fact, the data owner does not need to known or keep
track of the write tag of her resources.

Procedure Revoke in Figure 7 receives as input a user u and a resource
o and revokes u the privilege of modifying o. The procedure first updates
the write access list w[o] of the resource by removing user u (line 6). It then
retrieves the derivation key (and the corresponding label) that will be used to
encrypt the write tag of the resource (i.e., the key shared by the authorized
writers of o, except u, and the server) by calling function Get Shared Key
on the updated write access list of the resource (lines 7–8). The procedure
then calls procedure Create New Tag, which is executed by the server, to
generate a new write tag for the resource and update its representation at the
server (line 9). Procedure Create New Tag in Figure 7 receives as input
the identifier id of resource o and a label lnew, and generates a new write tag

20

for o, which is then encrypted with the key identified by lnew. The procedure
first determines the tuple t in the outsourced table representing the resource
with identifier id (line 9). It then finds the token that permits to derive
the key knew with which the new write tag must be encrypted to reflect the
policy change (i.e., the token from lS to lnew) (line 10). The procedure uses
this token to derive knew (line 11), randomly generates a value for the write
tag (line 12), and encrypts this value with key knew (line 13). Finally, the
procedure updates t[w label], setting it to lnew to reflect the policy update
(line 14).

Example 4.3. Consider the key derivation structure, outsourced resources,
and tokens in Figure 8, and assume that the data owner revokes from A
the write privilege over resource o3 (i.e., w[o3]=w[o3]\{A}=C). Since the
key derivation structure does not include a key shared by the server and C,
such a key is first computed as the hash of derivation key kC with secure
hash function hs. Then, a new write tag is generated for o3 and encrypted
with kCS . Figure 9 illustrates the read an write access lists, the encrypted
resources, the key derivation structure, and the tokens after this revocation.

The following theorem formally proves that procedures Grant and
Revoke correctly enforce updates to the write authorizations in the system.

Theorem 4.1 (Correct enforcement of policy updates). Let U be a
set of users, S be an external server, O be a set of resources with r[o] and
w[o] the read and write access lists of o, respectively, and 〈K,L,T 〉 a key
derivation structure. Procedures Grant and Revoke in Figure 7 guarantee
that the following conditions are satisfied:

1. ∀u ∈ U and ∀o ∈ O, u can decrypt encr resource[o] iff u ∈ r [o] (read
authorization enforcement);

2. ∀u ∈ U and ∀o ∈ O, u can decrypt encw tag[o] iff u ∈ w [o] (write
authorization enforcement);

3. ∀o ∈ O, S can decrypt encw tag[o] (write control).

Proof. See Appendix A. �

21

o r[o] w[o]
o1 ABCD BD
o2 ABCD ABD
o3 ABC C
o4 BD BD

r label w label o id encw tag encr resource
lABCD lBDS 1 α zKZlJxVcCrC0g
lABCD lABDS 2 ε t9qdJqC7AImXU
lABC lCS 3 η AxalPH8Kv37Ts
lBD lBDS 4 ζ xwfPJSLn.MVqY

(a) (b)

�� ��
�� ��A ��

�
��

��
��

��
��

��
��

��
��

��
��

�� ��
�� ��AC ��

��

�� ��
�� ��ABC

���
��

��
��

��
��

�� ��
�� ��B ��

����������������

���
��

��
��

��
� BS ACS

S

								

���
��

��
��

��
�

��

 ��

����������������
BDS �� ��

�� ��ABCD

�� ��
�� ��C

��

 �� ��
�� ��BD

����
���

�

�����������������

��

ABDS

�� ��
�� ��D

								
CS �� ��

�� ��ABD

��

from to val
lA lAC kAC⊕h(kA,lAC)
lA lABD kABD⊕h(kA,lABD)
lB lABC kABC⊕h(kB,lABC)
lB lBD kBD⊕h(kB ,lBD)
lC lAC kAC⊕h(kC ,lAC)
lD lBD kBD⊕h(kD ,lBD)
lAC lABC kABC⊕h(kAC ,lABC)
lBD lABD kABD⊕h(kBD ,lABD)
lBD lABCD kABCD⊕h(kBD ,lABCD)
lABC lABCD kABCD⊕h(kABC ,lABCD)
lS lBS kBS⊕h(kS ,lBS)
lS lCS kCS⊕h(kS ,lCS) •
lS lACS kACS⊕h(kS ,lACS)
lS lBDS kBDS⊕h(kS ,lBDS)
lS lABDS kABDS⊕h(kS ,lABDS)

(c) (d)

Figure 9: Read and write acls (a), encrypted resources (b), key derivation structure (c),
and tokens (d) of Figure 8 after A is revoked write permission over o3

5. Write integrity control

Although the server can be assumed trustworthy to manage resources
and delegated actions, it is important to provide a means to the data owner
to verify that the server and users are behaving properly. Providing such a
control has a double advantage: i) it allows detecting resource tampering,
due to the server not performing the required check on the write tags or
directly tampering with resources, and ii) it discourages improper behavior
by the server and by the users since they know that their improper behavior
can be easily detected, and their updates recognized as invalid and discarded.
In this section, we illustrate our approach for providing the data owner with
a means to verify that modifications to a resource have been produced only
by users authorized to write the resource. In the following section, we will
extend our solution to the management of updates to write privileges. As
discussed in previous sections, if the server performs the correct control on
the write tags, data integrity is automatically guaranteed. We therefore

22

metadata resource write integrity control
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

law [o] lar [o] lw [o]∪{S} o idE(tag[o], kw [o]∪{S}) E(o, ka
r [o]) E(ts, kw [o]∪{S})H(o||u t′||ts,ku)H(o||ts,ka

w [o])

int labelr labelw labelo id encw tag encr resource encw ts user tag group tag

Figure 10: Structure of outsourced resources

illustrate how to perform a write integrity control to detect misbehavior (or
laziness) by the server as well as misbehavior by users that can happen with
the help of the server (not enforcing the control on the write tags since it
is either colluding with the user or just behaving lazily) or without the help
of the server (if the user improperly acquires the write tag for a resource by
others).

A straightforward approach to provide such a write integrity control
would be to apply a signature-based approach. This requires each user to
have a pair 〈private,public〉 of keys and, when updating a resource, to
sign the new resource content with her private key. The data owner can then
check the write integrity by verifying that the signature associated with a re-
source correctly reflects the resource content and that it has been produced
by a user authorized for the operation. Such an approach, while intuitive
and simple, has however the main drawback of being computationally ex-
pensive (asymmetric encryption is considerably less efficient than symmetric
encryption) and not well aligned with our approach, which - as a matter of
fact - exploits symmetric encryption, tokens, and hash functions to provide
efficiency in storage and processing. In the spirit of our approach, we then
build our solution for controlling write integrity on HMAC functions [7]. In
fact, for common platforms, the ratio between the execution times of digi-
tal signatures and of HMAC is more than three orders of magnitude. We
then associate with each resource the following three integrity control fields
(namely, encw ts, user tag, and group tag) and metadata field (namely,
int label) to the fields introduced in Section 3 (see Figure 10).

• encw ts: timestamp of the write operation, encrypted with the key
kw [o]∪{S} corresponding to the group including the server and all the
users in the write access list of o (i.e., E(ts, kw [o]∪{S}));

• user tag: HMAC H computed with the key ku of the user who per-
formed the write operation over the resource, concatenated with the

23

user tag u t′ of the resource prior to the write operation,1 and the
timestamp ts of the write operation (i.e., H(o||u t′||ts,ku));

• group tag: HMAC H computed with the access key ka
w [o] correspond-

ing to the write access list of o over the resource, concatenated with
the timestamp of the write operation (i.e., H(o||ts,ka

w [o])).

• int label: label of the key used to compute the group tag (i.e., law [o]).

At time zero, when the data owner outsources her resources to the server,
the values of the user tag and of the group tag are those computed by
the owner with her own key for the user tag, and with the key of the
write access list of the resource (to which the owner clearly belongs) for
the group tag. Every time a user updates a resource, it also updates its
user tag, group tag, and int label.

A user tag is considered valid if it matches the resource content and it
is produced by a user in the write access list of the resource. The user tag

provides write integrity (meaning the resource has been written by an autho-
rized user) and accountability of user actions (i.e., the user cannot repudiate
her write actions). In fact, since the data owner knows the key ku of every
user u (which she generated and distributed), she can check the validity of
the user tag and detect possible mismatches, corresponding to unauthorized
writes. In addition, every write operation considered valid (according to the
control on the user tag) cannot be repudiated by the user u whose key ku
generated the HMAC. The consideration of group tag extends the ability of
checking the validity of the write operations (i.e., write integrity) also to all
the users in the write access list of the resource. Note that allowing writ-
ers to check resource integrity is not less important than allowing the data
owner to perform the check, as it guarantees that, even in cases of data owner
absence, all write operations are performed on resources that have not been
improperly modified. Indeed, before modifying a resource content, the writer
will check its integrity to be sure that she is operating on genuine data.

While we assume the server to be trustworthy and therefore not interested
in tampering with the resources, we note that the user tag would allow also

1The reason for including the user tag of the resource prior to the write operation
is to provide the data owner with a hash chain connecting all the resource versions (we
assume the server to never overwrite resources but to maintain all their versions).

24

to detect possible tampering of the server with the resource (since not being
an authorized writer, the server will not be able to produce a valid user tag).
The server could also tamper with the write authorizations, by decrypting
the write tag and encrypting it with the key corresponding to a different write
access list. However, the improper inclusion of a user in the write access list
does not have any different effect than when the server does not perform the
control, since the user improperly included in the write access list will not be
able to produce a valid user tag. Analogously, the improper removal of a
user from the write access list has the same effects as when the server refuses
its services.

Unauthorized write operations, in the case of a well behaving server,
can only happen if a user has improperly acquired or received from other
authorized users the write tag of a resource. Whichever the case, the user
will be able to provide neither a valid user tag nor a valid group tag for the
resource. Also, the data owner and any user authorized to write the resource
will be able to detect the invalidity of the group tag, since the key used to
compute the HMAC will not correspond to the access key of w[o].

6. Write integrity control with policy updates

A change in the write authorizations of a resource also requires a change
in the write integrity fields associated with the resource. In particular, when
user u gains the privilege of writing resource o as a consequence of a grant
operation, the set w[o]∪{u} of users should be able to generate and check the
group tag of o. If this were not the case, u would not be able to verify the
integrity of the resource before modifying its content. Analogously, when u
is revoked the write privilege over o, the set w[o]\{u} of users should be able
to generate and check the group tag of o. If this were not the case, u could
possibly collude with the server to modify the content of resource o without
being detected by the other writers of the resource. A naive strategy to com-
pute a group tag that guarantees the correct enforcement of integrity checks
would require the data owner, when granting/revoking a write privilege, to:
i) download the encrypted resource from the external server, ii) decrypt its
content, iii) compute the HMAC of the resource with the access key of the
new set of writers, and iv) send the new value of the group tag back to the
server. However, this approach causes a high computation and communi-
cation overhead for the data owner, who should interact with the external
server at every update of the write authorizations. To reduce this overhead,

25

we put forward the idea of modifying the key derivation structure to prevent
the re-computation of the group tag, and therefore the need for the data
owner to download the resource at every policy update. In the remainder of
this section, we first describe our approach for efficiently supporting integrity
verification in case of policy updates (Section 6.1), and we then discuss its
exposure to integrity violations (Section 6.2).

6.1. Integrity keys

Let us assume that the data owner grants user u the write privilege for
resource o. Since the group tag of o is computed using key ka

w [o] that u does
neither know nor can derive, a straightforward approach that would permit
u to verify the integrity of o consists in inserting into the key derivation
structure a token from ku to ka

w [o]. This solution has however two drawbacks:

i) it does not handle revoke operations; and ii) it permits u to derive access
key ka

w [o] used to encrypt resources o′ with r[o′]=w[o] (and to generate the

group tag of resources o′ with w[o′]=w[o]). With respect to the first draw-
back, we note that the data owner can always detect the misbehavior of users
who modify revoked resources since they are not able to generate correct user
tags for these resources. With respect to the second drawback, this solution
has the side effect of permitting used u to access the content of resources she
is not authorized to read. For instance, with reference to Example 4.2, grant-
ing A write access to o2 causes the insertion of a token from kA to ka

BD, used
to compute the group tag of o2. However, ka

BD is also used to encrypt o4
(r[o4]=BD), which A is not authorized to read. This confidentiality breach is
due to the fact that the same key is used for two different purposes: protect
data confidentiality (when encrypting the content of resources), and provide
integrity guarantees to outsourced data (when computing the group tag of
resources). A simple and effective solution to this problem consists in using
two different keys for protecting data confidentiality and for providing in-
tegrity. We then associate an integrity key (and corresponding label) with a
derivation key whenever needed, and we use integrity keys to compute group
tags. We note that, like access keys, integrity keys do not provide deriva-
tion capability via tokens (i.e., tokens cannot have integrity keys as starting
point). Given derivation key kU associated with a group U of users, the
corresponding integrity key ki

U is obtained by applying a secure hash func-
tion hi to kU (i.e., ki

U=hi(kU)). The group tag of a resource o is then the
HMAC, computed with the integrity key ki

w [o] of the write access list of o,
over the resource concatenated with the timestamp of the write operation

26

metadata resource write integrity control
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

liw [o] lar [o] lw [o]∪{S} o idE(tag[o], kw [o]∪{S}) E(o, ka
r [o]) E(ts, kw [o]∪{S})H(o||u t′||ts,ku)H(o||ts,ki

w [o])

int labelr labelw labelo id encw tag encr resource encw ts user tag group tag

Figure 11: Structure of outsourced resources adopting integrity keys

(see Figure 11). When user u is granted the privilege of modifying o, the
data owner inserts into the key derivation structure a token that permits
u to derive integrity key ki

w [o]. With reference to the example above, when
A is granted write access to o2, the data owner inserts a token from kA to
ki
BD, which permits A to verify the integrity of o2 without compromising the

confidentiality of o4.
It is interesting to note that, when inserting a token from ku to ki

U , the
set of users who know or can derive ki

U becomes U∪{u}, and is therefore
different from the set of users who know or can derive the corresponding
derivation key kU . As a consequence, when granting u write access to o,
the integrity field int label of o remains unchanged and is equal to liU ,
where U corresponds to the write access list of resource o before the grant
operation (i.e., u /∈U). To limit this mismatch between w[o] and the label
of the key used for the group tag, at each write operation the user who
modifies the resource content generates a new group tag using the integrity
key associated with the current write access list of the resource, which reflects
the grant/revoke operation. For instance, with reference to Example 4.2,
after granting A write privilege over o2 (but before any further update to o2),
integrity field int label for resource o2 has value liBD since the group tag

had been computed using the integrity key of w[o2] before inserting A into the
write access list of the resource. Assume now that user B modifies resource
o2. She will compute the group tag for the resource as H(o2||ts,ki

ABD) and,
when uploading the new resource content and the corresponding group tag,
she will also update the value of int label, setting it to liABD.

6.2. Exposure risk

We now discuss two cases of possible exposure of data integrity that might
occur as a consequence of a policy update.

Revoke. According to the mechanism illustrated above, when the data owner
revokes u write access to o neither the group tag of the resource nor the key

27

derivation structure are modified. As a consequence, u is able to verify and to
generate a valid group tag for o till the first update of the resource content
by an authorized writer. In this time window, u is not able to decrypt
encw tag for o but, colluding with the server, she could possibly modify
the resource content and compute a valid group tag for o (i.e., a tag that
authorized writers would accept). In fact, u can derive the integrity key
identified by int label, and then compute a group tag that is compliant
with the new resource content, using the key identified by int label. Note
that this collusion has the effect that we have when the server does not check
write requests.

Policy split. A similar situation can happen when a user u is granted the
write privilege for a resource o that has the same write access list of other
resources. In fact, the integrity key ki used to compute the group tag of o
is also used to compute the group tag of all the resources o′ with w[o′]=w[o]
before the grant operation. Since u, as a consequence of the grant opera-
tion, can derive ki to verify the integrity of o, she can (as a side-effect) also
verify and compute a valid group tag for all those resources with the same
int label. Also in this situation, u can collude with the server (or exploit
the laziness of the server not checking write requests) to modify the content
of o without being detected by authorized users.

The misbehaviors described above for the revoke and policy split cases do
not go undetected by the data owner. In fact, users cannot compute a valid
user tag for a resource that she is not authorized to write. Also, exposure to
integrity violations is limited and well identifiable. The data owner can then
counteract them by explicitly recomputing the group tag of the resource
subject to the revoke/grant operation when she considers the communication
and computation overhead worth to protect the exposed resources. The risk
of integrity violations caused by policy splits can be mitigated by a proper
organization of the resources, that is, adopting the same integrity key only
if the write access list of the resources is likely to evolve in the same way.

7. Related work

In the last few years, several research efforts have been devoted to en-
able data owners to outsource the storage and management of their data
to possibly non-fully trusted third parties (e.g., [4, 8, 9]). Most proposals

28

have addressed the problem of efficiently performing queries on outsourced
encrypted data, without decrypting sensitive information at the server side.
These approaches typically define indexes that are stored together with the
encrypted data and are used by the external server to select the data to
be returned in response to a query (e.g., [2, 3, 10, 11, 12]). Alternative
solutions instead adopt specific encryption functions (usually exploiting ho-
momorphic properties) that permit keyword searches at the server side over
encrypted data, without compromising the confidentiality of the outsourced
data (e.g., [13]). A related line of work is represented by the design of
mechanisms for easily verifying that neither an external malicious user nor
the external server improperly modify data in storage (e.g., [14, 15, 16])
and that the external server provides a correct response to users queries
(e.g., [17, 18, 19, 20, 21, 22]). However, these approaches do not take into
consideration possible access restrictions that users may have on the out-
sourced data.

The problem of specifying and enforcing an authorization policy on
outsourced data, without the need for the data owner to filter query
results, has recently received the attention of the research community
(e.g., [5, 23, 24, 25]). The first proposal in this direction focuses on pro-
tecting access to published XML documents [23]. To this purpose, different
portions of the XML tree are encrypted using different keys and specific meta-
data nodes are inserted into the XML structure. The solution in [5], which
can be adopted independently from the data organization, first proposes the
combined use of selective encryption and key derivation strategies, to guar-
antee a limited key management overhead at the client side while correctly
enforcing the data owner access control policy. This approach also permits
to delegate to the external server the management of updates to read autho-
rizations. The solution in [24] uses attribute-based encryption for enforcing
access restrictions to outsourced data to provide system scalability. The so-
lution in [26] adopts selective encryption for enforcing a subscription-based
access control policy. The work in [25] proposes an approach that does not
require complete trust in the external provider w.r.t. both resource content
and authorization management.

All the access control approaches mentioned above however only focused
on the enforcement of read access privileges and do not support restrictions
on write operations, which are assumed to be an exclusive privilege of the
data owner. In the literature, few works have addressed this issue. The
solution in [27] adopts selective encryption to enforce the data owner’s au-

29

thorization policy on outsourced data, adopting asymmetric encryption to
enforce both read and write privileges and defining two key derivation hier-
archies: one for private keys (to enforce read privileges) and one for public
keys (to enforce write privileges). The solution also proposes to replicate
resources and perform updates on a different copy of the data, to prevent
unauthorized write operations from destroying valuable data content. The
proposal in [28] adopts Attribute-Based Encryption (ABE) and Attribute-
Based Signature (ABS) techniques to enforce read and write access privileges,
respectively. This approach, although effective, has the disadvantage of re-
quiring the presence of a trusted party for correct policy enforcement. The
work in [29] investigates a similar approach based on the combined use of
ABE and ABS for supporting both read and write privileges. This solution
has the advantage over the approach in [28] of being suited also to distributed
scenarios. All these approaches, however, do not address the problem of ef-
ficiently supporting changes to the authorization policy by the owner of the
data, which may require expensive data re-encryption operations.

8. Conclusions

In this paper, we presented an approach for supporting both read and
write privileges on outsourced encrypted data that does not require the data
owner intervention to filter query results and/or access requests. Our solu-
tion also efficiently supports updates in the access control policy, while min-
imizing the data owner’s overhead and resulting transparent to the users.
Data integrity can be easily verified by the data owner and by the users au-
thorized to write resources, thus providing guarantees on the fact that the
data externally stored have not been tampered with by unauthorized parties
without being detected. The proposed solution relies on the use of symmetric
encryption, hashing, and HMAC functions for enforcing access control and
integrity checks in an efficient and effective way. Our proposal then performs
a step towards the development of solutions actually applicable in real-world
scenarios where efficiency and scalability are mandatory.

Acknowledgments

This work was supported in part by the EC within the 7FP under grant
agreement 257129 (PoSecCo), by the Italian Ministry of Research within
PRIN 2010-2011 project “GenData 2020” (2010RTFWBH), and by Google,

30

under the Google Research Award program. The work of Sushil Jajodia was
partially supported by the US Air Force Office of Scientific Research under
grant FA9550-09-1-0421.

References

[1] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
P. Samarati, Support for write privileges on outsourced data, in: Proc.
of SEC 2012, Heraklion, Greece.

[2] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi,
P. Samarati, Balancing confidentiality and efficiency in untrusted rela-
tional DBMSs, in: Proc. of CCS 2003, Washington, DC, USA.

[3] H. Hacigümüs, B. Iyer, S. Mehrotra, C. Li, Executing SQL over en-
crypted data in the database-service-provider model., in: Proc. of SIG-
MOD 2002, Madison, WI, USA.

[4] P. Samarati, S. De Capitani di Vimercati, Data protection in outsourcing
scenarios: Issues and directions, in: Proc. of ASIACCS 2010, Beijing,
China.

[5] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
P. Samarati, Encryption policies for regulating access to outsourced
data, ACM TODS 35 (2010) 12:1–12:46.

[6] M. Atallah, K. Frikken, M. Blanton, Dynamic and efficient key man-
agement for access hierarchies, in: Proc. of CCS 2005, Alexandria, VA,
USA.

[7] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message
authentication, in: Proc. of CRYPTO 1996, Santa Barbara, CA, USA.

[8] R. Jhawar, V. Piuri, P. Samarati, Supporting security requirements for
resource management in cloud computing, in: Proc. of CSE 2012, CSE
2012, Paphos, Cyprus.

[9] V. P. R. Jhawar, M. Santambrogio, Fault tolerance management in
cloud computing: A system-level perspective, IEEE Systems Journal
(2012).

31

[10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
P. Samarati, Private data indexes for selective access to outsourced
data, in: Proc. of WPES 2011, Chicago, IL, USA.

[11] R. Agrawal, J. Kierman, R. Srikant, Y. Xu, Order preserving encryption
for numeric data, in: Proc. of SIGMOD 2004, Paris, France.

[12] H. Wang, L. V. S. Lakshmanan, Efficient secure query evaluation over
encrypted XML databases, in: Proc. of VLDB 2006, Seoul, Korea.

[13] C. Wang, N. Cao, K. Ren, W. Lou, Enabling secure and efficient ranked
keyword search over outsourced cloud data, IEEE TPDS 23 (2012)
1467–1479.

[14] E. Mykletun, M. Narasimha, G. Tsudik, Authentication and integrity
in outsourced databases, ACM TOS 2 (2006) 107–138.

[15] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, D. Song, Remote data checking using provable data pos-
session, ACM TISSEC 14 (2011) 12:1–12:34.

[16] C. Wang, S. Chow, Q. Wang, K. Ren, W. Lou, Privacy-preserving public
auditing for secure cloud storage, IEEE TC 62 (2012) 362–375.

[17] G. Di Battista, B. Palazzi, Authenticated relational tables and authen-
ticated skip lists, in: Proc. of DBSec 2007, Redondo Beach, CA, USA.

[18] R. Merkle, A certified digital signature, in: Proc. of CRYPTO 1989,
Santa Barbara, CA, USA.

[19] H. Pang, A. Jain, K. Ramamritham, K. Tan, Verifying completeness of
relational query results in data publishing, in: Proc. of SIGMOD 2005,
Baltimore, MA, USA.

[20] R. Sion, Query execution assurance for outsourced databases, in: Proc.
of VLDB 2005, Trondheim, Norway.

[21] H. Wang, J. Yin, C. Perng, P. Yu, Dual encryption for query integrity
assurance, in: Proc. of CIKM 2008, Napa Valley, CA, USA.

[22] M. Xie, H. Wang, J. Yin, X. Meng, Integrity auditing of outsourced
data, in: Proc. of VLDB 2007, Vienna, Austria.

32

[23] G. Miklau, D. Suciu, Controlling access to published data using cryp-
tography, in: Proc. of VLDB 2003, Berlin, Germany.

[24] S. Yu, C. Wang, K. Ren, W. Lou, Achieving secure, scalable, and fine-
grained data access control in cloud computing, in: Proc. of INFOCOM
2010, San Diego, CA, USA.

[25] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
G. Pelosi, P. Samarati, Encryption-based policy enforcement for cloud
storage, in: Proc. of SPCC 2010, Genova, Italy.

[26] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, Enforcing
subscription-based authorization policies in cloud scenarios, in: Proc.
of DBSec 2012, Paris, France.

[27] M. Raykova, H. Zhao, S. Bellovin, Privacy enhanced access control for
outsourced data sharing, in: Proc. of FC 2012, Bonaire.

[28] F. Zhao, T. Nishide, K. Sakurai, Realizing fine-grained and flexible
access control to outsourced data with attribute-based cryptosystems,
in: Proc. of ISPEC 2011, Guangzhou, China.

[29] S. Ruj, M. Stojmenovic, A. Nayak, Privacy preserving access control
with authentication for securing data in clouds, in: Proc. of CCGrid
2012, Ottawa, Canada.

33

Appendix A. Proof of theorems

Theorem 3.1 (Correctness of procedure Define Key Derivation Structure).
Let U be a set of users, S be an external server, U⊆2U be a family of subsets
of users in U such that ∀u∈U , {u}∈U, and Us and Ua be two subsets of U.
Triple 〈K,L,T 〉 computed by function Define Key Derivation Structure
in Figure 2 is a key derivation structure (Definition 3.2).

Proof. We prove that the triple 〈K,L,T 〉 computed by function
Define Key Derivation Structure satisfies all the conditions in Defini-
tion 3.2.

• Condition 1 is satisfied since in Step 1 the function generates a key for
each set of users in U and inserts it into K′ (lines 6–7). The set K′ of
keys resulting from Step 1 then corresponds to the set of keys of the
set-based key derivation graph. In Step 2, the function generates a key
kS for the server (line 14) and inserts both key kS and all the keys in K′

into K (line 15). For each set U of users in Us, the function computes
the key for U∪{S} as hs(kU) (lines 18–19), where hs is a secure hash
function, and inserts kU∪{S} into K (line 21). Similarly, for each set
U of users in Ua, the function computes the access key ka

U as ha(kU)
(lines 24–25), where ha is a secure hash function, and inserts ka

U into
K (line 27).

• Condition 2 is satisfied since in Step 1 the function defines a set T ′

of tokens that guarantees that each key kU in K can be directly de-
rived from a set {kU1,. . . ,kUn} of keys in K′ such that U1 ∪ . . .∪Un=U
(lines 10–12). As proved in [5], this property is equivalent to Condi-
tion 2 in Definition 3.1. Therefore the set of tokens T ′ resulting from
Step 1 corresponds to the set of tokens of the set-based key deriva-
tion graph. In Step 2 the function inserts into T all the tokens in T ′

(line 17) and, for each set U of users in Us, it defines and inserts into
T token tS,U∪{S} that permits to derive kU∪{S} from kS (line 23). �

Theorem 3.2 (Correct enforcement of authorizations). Let U be a
set of users, S be an external server, O be a set of resources such that ∀o∈O
r[o] and w[o] are the read and write access lists of o, respectively. Our access
control system satisfies the following conditions:

34

1. ∀u ∈ U and ∀o ∈ O, u can decrypt encr resource[o] iff u ∈ r [o] (read
authorization enforcement);

2. ∀u ∈ U and ∀o ∈ O, u can decrypt encw tag[o] iff u ∈ w [o] (write
authorization enforcement);

3. ∀o ∈ O, S can decrypt encw tag[o] (write control).

Proof. The proof is based on the fact that, by Theorem 3.1, triple
〈K,L,T 〉 computed by function Define Key Derivation Structure is a
key derivation structure. We first note that, by procedure Initialize System
in Figure 4, K includes a derivation key ku for each user u∈U , and a derivation
key kU for each set U of users representing a read or write access list of
a resource o∈O. In fact, function Define Key Derivation Structure is
called over U , S, U, Us, Ua, hs, and ha, with Us the set of write access lists,
Ua the set of read access lists, and U the result of Ua∪Us together with all
the singleton sets {u} of users in U (lines 2–5). We now prove that each
condition in Theorem 3.2 holds.

1. u can decrypt encr resource[o] =⇒ u ∈ r [o].
Assume, by contradiction, that u 	∈r[o] can decrypt encr resource[o].
Since encr resource[o] is computed by encrypting o with access key
ka
r [o] (line 19), u can either compute or derive ka

r [o]. T does not in-
clude any token that permits to derive access keys, therefore u needs
to know derivation key kr [o]∈K with which ka

r [o]∈K has been computed.

However, T includes a token (or a sequence thereof) from derivation
key ku of user u (lines 7–8) to derivation key kU iff u∈U (Condition 2
in Definition 3.1). This implies that {u}⊆r[o], which contradicts our
hypothesis.

u∈r[o] =⇒ u can decrypt encr resource[o].
By Condition 2 in Definition 3.1, there exists a token (or a sequence
thereof) in T that permits to derive derivation key kU from ku iff u∈U .
Therefore, if u∈r[o], there exists a token (or a sequence thereof) in T
from ku to kr [o]∈K. Since u can derive kr [o] and ha is public, she can
also compute access key ka

r [o]=ha(kr [o]) and decrypt encr resource[o].

2. u can decrypt encw tag[o] =⇒ u ∈ w [o].
Assume, by contradiction, that u 	∈w[o] can decrypt encw tag[o].
Since encw tag[o] is computed by encrypting tag[o] with key kw [o]∪{S}
(line 18), u can compute or derive kw [o]∪{S}. Since all tokens in T that
permit to derive key kw [o]∪{S} shared with the server have kS as starting

35

point (Condition 2 in Definition 3.2), u must know (or be able to derive)
derivation kw [o]. However, T includes a token (or a sequence thereof)
from derivation key ku of user u (lines 7–8) to derivation key kU∈K,
iff u∈U (Condition 2 in Definition 3.1). This implies that {u}⊆w[o],
which contradicts our hypothesis.

u∈w[o] =⇒ u can decrypt encw tag[o].
By Condition 2 in Definition 3.1, there exists a token (or a sequence
thereof) in T that permits to derive derivation key kU from ku iff u∈U .
Therefore, if u∈w[o], there exists a token (or a sequence thereof) in T
from ku to kw [o]. Since u can derive kw [o] and hs is public, she can also
compute key kw [o]∪{S}=hs(kw [o]) and decrypt encw tag[o].

3. S can decrypt encw tag[o].
As noted above, encw tag[o] is computed by encrypting tag[o] with
key kw [o]∪{S}. Since S knows key kS and, for each key kU∪{S} in K, T
includes token tS,U∪{S} (Condition 2 in Definition 3.2), S can derive
kw [o]∪{S} and decrypt encw tag[o]. �

Before proving Theorem 4.1, we show that both function Get Key and
function Get Shared Key, which possibly update the key derivation struc-
ture, do not compromise its correctness (Definition 3.2).

Lemma A.1 (Correctness of function Get Key). Let U be a set of
users, U be a subset of U , S be an external server, and 〈K,L,T 〉 be a key
derivation structure. Triple 〈K′,L′,T ′〉 resulting from the execution of func-
tion Get Key(U) in Figure 5 is a key derivation structure (Definition 3.2).

Proof. Since we assume that 〈K,L,T 〉 is a key derivation structure when
function Get Key is called, we need to consider only the keys and tokens
inserted, updated, or removed by the function.

If the key derivation structure already includes a key kU known to all and
only the users in U , the function does not modify 〈K,L,T 〉 and therefore the
lemma holds (lines 1–2).

If, on the contrary, kU 	∈K, function Get Key inserts it into the key
derivation structure. We then need to prove that such an insertion does not
violate the conditions in Definition 3.2.

• Condition 1 is satisfied since function Get Key generates a derivation
kU (and a label lU) and computes the corresponding access key ka

U (and

36

a label laU). It then inserts kU ,k
a
U into K and lU ,l

a
U into L (lines 3–

7). The function then inserts access key ka
U into K only when the

corresponding derivation key kU has been inserted into K.

• Condition 2 is satisfied as the set of tokens inserted into T by func-
tion Get Key guarantees that kU can be directly derived from a set
{kU1,. . . ,kUn} of keys in K such that U1 ∪ . . . ∪ Un=U (lines 8–12). As
proved in [5], this property is equivalent to Condition 2 in Definition 3.1.

Lemma A.2 (Correctness of function Get Shared Key). Let U be a
set of users, U be a subset of U , S be an external server, and 〈K,L,T 〉 be
a key derivation structure. Triple 〈K′,L′,T ′〉 resulting from the execution
of function Get Shared Key(U) in Figure 5 is a key derivation structure
(Definition 3.2).

Proof. Since we assume that 〈K,L,T 〉 is a key derivation structure when
function Get Shared Key is called, we need to consider only the keys and
tokens inserted, updated, or removed by the function.

If the key derivation structure already includes a key kU∪{S} shared by
the users in U and the external server, the function does not modify 〈K,L,T 〉
and therefore the lemma holds (lines 19–20).

If, on the contrary, kU∪{S} 	∈K, function Get Shared Key inserts it into
the key derivation structure. We then need to prove that such an insertion
does not violate the conditions in Definition 3.2.

• Condition 1 is satisfied since function Get Shared Key computes key
kU∪{S} as the result of hash function hs over kU (line 22) and it ob-
tains kU by calling function Get Key (line 21), which does not com-
promise the correctness of the key derivation structure (as proved by
Lemma A.1). Function Get Shared Key then inserts kU∪{S} and the
corresponding label into K and L, respectively (lines 24–25). The func-
tion then inserts key kU∪{S} into K only when derivation key kU has
been inserted into K.

• Condition 2 is satisfied since functionGet Shared Key inserts a token
tS,U∪{S}, which permits the server to derive kU∪{S} from kS (line 26).�

Theorem 4.1 (Correct enforcement of policy updates). Let U be a
set of users, S be an external server, O be a set of resources with r[o] and

37

w[o] the read and write access lists of o, respectively, and 〈K,L,T 〉 a key
derivation structure. Procedures Grant and Revoke in Figure 7 guarantee
that the following conditions are satisfied:

1. ∀u ∈ U and ∀o ∈ O, u can decrypt encr resource[o] iff u ∈ r [o] (read
authorization enforcement);

2. ∀u ∈ U and ∀o ∈ O, u can decrypt encw tag[o] iff u ∈ w [o] (write
authorization enforcement);

3. ∀o ∈ O, S can decrypt encw tag[o] (write control).

Proof. Since we assume that all the conditions are satisfied when proce-
dure Grant (Revoke, respectively) is called, we need to consider only users
and resources for which the policy changes. Also, Condition 1 is not affected
by procedures Grant and Revoke as they neither modify the read access
list of resources nor re-encrypt resources content.

• Grant(u,o). The procedure inserts u into w[o] (line 2), therefore Con-
dition 2 is satisfied iff u can decrypt encw tag[o]. The write tag tag[o]
of resource o is encrypted by procedure Encrypt Tag with the key
knew associated with label lnew. Since procedure Grant calls procedure
Encrypt Tag with lw [o]∪{S} as input, the server encrypts tag[o] with
key kw [o]∪{S} (line 5). This key belongs to the key derivation structure,
since procedure Grant calls function Get Shared Key with w[o] as
input (line 3). By Lemma A.2, key kw [o]∪{S} can be derived by all
and only users in w[o] and by the server. Therefore, procedure Grant
satisfies both Condition 2 and Condition 3.

• Revoke(u,o). The procedure removes u from w[o] (line 6), therefore
Condition 2 is satisfied iff u cannot decrypt encw tag[o]. Procedure
Create New Tag generates a new tag for o and encrypts it with the
key knew associated with label lnew. Since procedure Revoke calls pro-
cedure Create New Tag with lw [o]∪{S} as input, the server encrypts
the new value of the tag with key kw [o]∪{S} (line 9). This key belongs
to the key derivation structure, since procedure Revoke calls function
Get Shared Key with w[o] as input (line 7). By Lemma A.2, key
kw [o]∪{S} can be derived by all and only users in w[o] and by the server.
Therefore, procedure Revoke satisfies both Condition 2 and Condi-
tion 3.

�

38

