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Abstract

Data outsourcing is emerging today as a successful paradigm allowing in-

dividuals and organizations to resort to external servers for storing their data,

and sharing them with others. The main problem of this trend is that sensitive

data are stored on a site that is not under the data owner’s direct control. This

scenario poses a major security problem since often the external server is relied

upon for ensuring high availability of the data, but it is not authorized to read

them. Data need therefore to be encrypted. In such a context, the application

of an access control policy requires different data to be encrypted with different

keys so to allow the external server to directly enforce access control and support

selective dissemination and access. The problem therefore emerges of designing

solutions for the efficient management of an encryption policy enforcing access

control, with the goal of minimizing the number of keys to be maintained by

the system and distributed to users.

In this paper, we prove that the problem of minimizing the number of keys

is NP-hard and present alternative approaches for its solution. We first formu-
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late the minimization problem as an instance of an integer linear programming

problem and then propose three different families of heuristics, which are based

on a key derivation tree exploiting the relationships among user groups. Finally,

we experimentally evaluate the performance of our heuristics, comparing them

with previous approaches.

Key words: Data outsourcing, encryption policy, confidentiality

1. Introduction

Data outsourcing has become increasingly popular in recent years. The

main advantage of data outsourcing is that it promises higher availability and

more effective disaster protection than in-house operations. However, since

data owners physically release their information to external servers that are

not under their control, data confidentiality (and even integrity) may be put

at risk. Besides protecting such data from attackers and unauthorized users,

there is the need to protect the privacy of the data from the so called honest-

but-curious servers, that is, servers that, while trustworthy to properly manage

the data, may not be trusted by the data owner to read their content. The

problem of protecting data when outsourcing them to an external honest-but-

curious server has emerged to the attention of researchers very recently. Existing

proposals (e.g., [2, 3, 4]) in the data outsourcing area typically store the data

in encrypted form and associate with the encrypted data additional indexing

information. Such indexes are used by the external DBMS to select the data

to be returned in response to a query. Existing approaches however do not

address the problem of supporting different access privileges (authorizations) for

different users and result therefore limited in today’s scenarios, where remotely

stored data may need to be made accessible in a selective way (i.e., different

users may be authorized to access different views of the data).

There is therefore an increasing interest in the definition of security solu-

tions that allow the enforcement of access control policies on outsourced data.

A promising solution in this direction consists in integrating access control and
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encryption. Although traditional approaches assume a strict separation between

policies and mechanisms, and such a separation has often been beneficial, in the

data outsourcing scenario their combination is proving successful. Combining

cryptography with access control essentially requires that resources should be

encrypted differently depending on the access authorizations holding on them,

so to make their decryption possible only to authorized users [5, 6]. The appli-

cation of this approach in data outsourcing scenarios allows owners to encrypt

data, according to an encryption policy regulated by authorizations, outsource

the data to the external servers, and distribute to users the needed encryption

keys. Proper encryption and key distribution automatically ensure therefore

obedience of the access control policy, while not requiring the data owner to

maintain control on the data storage and accesses. In this paper, we address

such a problem and propose a heuristic approach to minimize the number of keys

to be maintained by the system and distributed to users. Like other proposals

in the literature [5, 6, 7], we base our solution on key derivation exploiting a key

derivation tree that allows users to derive new keys from other keys they know.

In [1] we presented an early version of our proposal that here is extended to con-

sider alternative approaches for determining the minimal number of keys that

correctly enforce an authorization policy defined by the data owner. In partic-

ular, we provide a new formulation of the problem in terms of an integer linear

programming problem and present two new families of heuristics (i.e., leaves-

based and mixed-based heuristics). We also formally prove that the problem of

minimizing the number of keys is NP-Hard.

The remainder of the paper is organized as follows. Section 2 illustrates the

basic concepts of access control systems based on selective encryption. Section 3

introduces our minimization problem. Section 4 formulates the minimization

problem as a minimum weight problem. Section 5 illustrates the integer linear

programming problem corresponding to the weight minimization problem. Sec-

tion 6 presents three families of heuristic, which are based on the computation

of a minimum spanning tree (MST) and on vertices factorization to improve the

quality of the solution. Section 7 presents some experimental results showing
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Figure 1: An example of access matrix (a) and of user graph over U={A,B,C,D} (b)

that, compared with previous proposals, our heuristics prove efficient and effec-

tive in the computation of a key derivation graph. Section 8 discusses related

work. Finally, Section 9 draws our conclusions.

2. Basic concepts

We assume that the data owner defines an authorization policy to regulate

read access to the outsourced resources.1 Given a set U of users and a set R
of resources, an authorization policy over U and R is defined as a set of pairs

〈u ,r〉, where u∈U and r∈R, meaning that user u can access resource r. An

authorization policy can be modeled via an access matrix A, with a row for

each user u∈U , a column for each resource r∈R, and A[u, r] is equal to 1 (0,

resp.) if u has (does not have, resp.) authorization to access r. Given an

access matrix A, acl(r) denotes the access control list of r (i.e., the set of users

that can access r), and cap(u) denotes the capability list of u (i.e., the set of

resources that u can access). Figure 1(a) illustrates an example of access matrix

with four users (A, B, C, D) and six resources (r1,. . . ,r6), where, for example,

acl(r2)={A,C} and cap(C)={r2,r4,r6}.
In the data outsourcing scenario, the enforcement of the authorization policy

1Write operations require re-encryption and re-uploading of the resources on the server

and are performed at the owner’s site, typically by the owner itself.
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cannot be delegated to the remote server, which is trusted neither for accessing

the data content nor for enforcing the authorization policy. Consequently, the

data owner has to be involved in the access control enforcement. To avoid the

owner’s involvement in managing access and enforcing authorizations, recently

selective encryption techniques have been proposed [5, 6, 8]. Selective encryp-

tion means that the encryption policy (i.e., which data are encrypted with which

key) is dictated by the authorizations to be enforced on the data. The basic

idea is to use different keys for encrypting data and to release to each user the

set of keys necessary to decrypt all and only the resources the user is autho-

rized to access. For efficiency reasons, selective encryption is realized through

symmetric keys.

A straightforward solution for implementing selective encryption associates

a key with each resource r and communicates to each user u the keys used

to encrypt the resources in cap(u). It is easy to see that this solution, while

correctly enforcing the authorization policy, is too expensive to manage, due to

the high number of keys each user has to keep. Indeed, any user u∈U would

need to hold as many keys as the number of resources she is authorized to access.

To avoid users having to store and manage a huge number of (secret) keys,

consistently with other proposals in the literature [5, 6], we exploit a key deriva-

tion method that allows the derivation of a key starting from another key and

some public information [9, 10, 11, 12, 13, 14]. In our scenario, the derivation

relationship between keys can be represented through a user graph, where there

is a vertex v for each possible set of users and a key associated with it, and there

is an edge (vi,vj) for all pairs of vertices such that the set of users represented

by vi is a subset of the set of users represented by vj . In the following, we use

v.acl to denote the set of users represented by vertex v and v.key to denote the

key associated with v. Formally, a user graph is defined as follows.

Definition 2.1 (User Graph). Given a set U of users, a user graph over U ,

denoted GU , is a graph 〈VU ,EU 〉, where VU=P (U) is the power set of U , and

EU={(vi,vj) | vi.acl⊂vj.acl}.
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As an example, consider the set of users U={A,B,C,D}. Figure 1(b) reports

the user graph, where, for each vertex vi, the users in the square brackets

represent vi.acl. For clarity of the picture, edges that are implied by other edges

(relationships between sets differing for more than one user) are not reported.

By exploiting the user graph defined above, the authorization policy can be

enforced: i) by encrypting each resource with the key of the vertex corresponding

to its access control list (e.g., resource r4 should be encrypted with v11.key since

acl(r4)=v11.acl={A,B,C}), and ii) by assigning to each user the key associated

with the vertex representing the user in the graph. Since edges represent the

possible key derivations, each user u, starting from her own key, can directly

compute the keys of all vertices v such that u∈v.acl. It is easy to see that this

approach to design the encryption policy correctly enforces the authorization

policy represented by matrix A, meaning that each user u can only derive the

keys of the resources she is authorized to access. For instance, with reference

to the user graph in Figure 1(b), user A knows the key associated with vertex

v1 from which she can derive, following the edges outgoing from v1, the keys

associated with vertices v5, v6, v7, v11, v12, v13, and v15.

3. Problem formulation

Although the solution based on a user hierarchy is conceptually simple and

potentially easy to implement, it defines significantly more keys than actually

needed. Furthermore, a crucial aspect for the success of a solution supporting

selective encryption is the efficiency of the key management and distribution

activities required. For these reasons, since key derivation methods working on

trees are in general more convenient and simpler than those working on DAGs

and require a lower amount of publicly available information, we transform,

according with the proposal in [5], the user graph GU in a user tree, denoted

T , enforcing the authorization policy in A. The user tree must include the set,

denoted M, of all vertices, called material vertices, representing acl values (i.e.,

vertices whose keys are used for encrypting resources) and the empty set of
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Figure 2: A user tree (a) and the corresponding key rings (b)

users (i.e., M = {v ∈ VU | v.acl=∅ ∨ ∃ r ∈ R with v.acl = acl(r)}), as formally

defined in the following.

Definition 3.1 (User tree). Let A be an access matrix over a set U of users

and a set R of resources, and GU = 〈VU ,EU 〉 be the user graph over U . A user

tree, denoted T , is a tree T = 〈V ,E〉, subgraph of GU , rooted at vertex v0, with

v0.acl=∅, where M⊆V⊆VU , and E⊆EU .

In other words, a user tree is a tree, rooted at the vertex representing the

empty user group ∅, subgraph of GU , and spanning all vertices in M.

To grant the correct enforcement of the authorization policy, each user u has

a key ring, denoted key ringT (u), containing all the keys necessary to derive the

keys of all vertices v such that u∈v.acl. More precisely, the key ring of each user

u must include the keys associated with all vertices v such that u∈v.acl and

u 6∈vp .acl, where vp is the parent of v. If u∈vp .acl, u must already have access

to the key in vp and must be able to derive v.key through the key of vp , which

she knows either by derivation or by direct communication.

Clearly, given a set of users and an authorization policy A, more user trees

may exist. Among all possible user trees, we are interested in determining a

minimum user tree, correctly enforcing a given authorization policy and mini-

mizing the number of keys in users’ key rings.

Definition 3.2 (Minimum user tree). Let A be an access matrix and T be
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a user tree correctly enforcing A. T is minimum with respect to A iff @T ′ such

that T ′ correctly enforces A and
∑

u∈U
|key ringT ′(u) | <

∑

u∈U
|key ringT (u) |.

Figure 2(a) illustrates an example of user tree and Figure 2(b) reports the

corresponding user key rings.2

Given an access matrix A, different minimum user trees may exist and our

goal is to compute one of them, as stated by the following problem definition.

Problem 3.1. Let A be an access matrix. Determine a minimum user tree T .

Since Problem 3.1 is NP-hard, in [5] we proposed a heuristic algorithm that

builds a user tree over the set of vertices obtained by closing M with respect to

the intersection operator. For each vertex, the algorithm selects a parent choos-

ing first vertices representing larger sets of users, and then material vertices.

Finally, the algorithm prunes non necessary vertices.

In the following, we further investigate the problem and elaborate alternative

solutions, that, as our experimental results prove, demonstrate more efficient

and generally better than our previous proposal [5].

4. Minimum weight user tree

Our solution is based on a reformulation of Problem 3.1 in terms of a weight

minimization problem. We start by introducing the concept of weight in asso-

ciation with a user tree.

Definition 4.1 (Weight function). Let T=〈V ,E〉 be a user tree.

• w:E→ N is a weight function such that ∀(vi, vj) ∈ E,

w(vi, vj) =|vj .acl \ vi.acl |

2Note that the keys in each key ring could be managed with the use of tokens, public

pieces of information that allow the reconstruction of a secret from another one [10, 11]. The

minimality of the user tree implies the minimization of the number of tokens, making the

approach presented in this paper applicable also to scenarios using tokens.
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Figure 3: Weighted version of the user tree in Figure 2

• weight(T ) =
∑

(vi,vj)∈E
w(vi, vj).

According to this definition, given a user tree T=〈V ,E〉, the weight w(vi,vj)

of edge (vi,vj) in E is the number of users in vj .acl\vi.acl and weight(T ) is the

sum of the weights of its edges. Figure 3 illustrates an example of weighted user

tree. Problem 3.1 can now be reformulated as the problem of finding a minimum

weight user tree. In fact, the presence of an edge (vi,vj) ∈ E implies that users

in vi.acl should know both keys vi.key and vj .key while users in vj .acl\vi.acl

need only to know vj .key. It is then sufficient to include key vi.key in the key

rings of all users in vi.acl, since vj .key can be derived from vi.key, and to include

key vj .key in the key rings of users in vj .acl\vi.acl. This is equivalent to say

that w(vi, vj) corresponds to the number of users whose key ring must include

key vj .key. Generalizing, it is immediate to conclude that weight(T ) is equal to

the sum of the total number of keys stored in users’ key rings (i.e., weight(T )

=
∑

u∈U
|key ringT (u)|).

The problem of computing a user tree with minimum weight is NP-hard

since the Vertex Cover problem can be reduced to it, as formally stated by the

following theorem.

Theorem 4.1 (NP-hardness). Let A be an access matrix over a set U of

users and a set R of resources. The problem of computing a minimum weight

user tree T correctly enforcing A is NP-hard.

Proof. See Appendix A.
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To solve the problem of computing a minimum weight user tree, we propose

two alternative approaches. First, we formulate the minimization problem as

an Integer Linear Programming (ILP) problem, which can be solved adopting

known algorithms and tools. Second, we introduce three families of heuristics,

which are based on the computation of a minimum spanning tree induced by

material vertices M over the user graph GU . The three families of heuristics

differ in the strategy adopted to reduce the cost of the minimum spanning tree.

In the following, we discuss in more details these two approaches.

5. Linear programming approach

The translation of the minimum weight user tree problem into a linear pro-

gramming problem exploits the interpretation of the edges in the user graph

GU=〈VU ,EU 〉 as boolean variables. For each edge (vi,vj) in EU , we define a

boolean variable, denoted xi,j , representing whether (vi,vj) is an edge of a min-

imum weight user tree T = 〈V ,E〉. The vertices composing V are all and only

the vertices in VU having at least an incident edge in E.

The formulation of our minimization problem as an integer linear program-

ming problem requires the specification of the objective function and of a set of

linear constraints. The objective function corresponds to the minimization of

weight(T ), modeled as the sum of the weights of the edges (vi,vj) such that xi,j

is equal to one. The linear constraints impose that: 1) the edges (and vertices)

selected form a tree structure; 2) all material vertices belong to the user tree.

The first property is satisfied if there is a root vertex (vertex v0 in our case)

and each vertex v in the tree has exactly one direct ancestor, that is, the number

of incoming edges of each vertex v in VU is either 1 or 0, depending on whether

v belongs to the computed user tree. The fact that a vertex of a user tree may

have only one incoming edge is equivalent to say that given a vertex vi, if at

least one among the variables representing its outgoing edges xi,k is equal to 1

(i.e., vi belongs to V ), exactly one among the variables representing its incoming

edges xl,i must be equal to 1, meaning that vi has to be connected to the tree
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with one incoming edge. Since the maximum number of children of a vertex v

in T is upper-bounded by the number of material vertices and, therefore, by the

number of resources |R|, by imposing that the number of incoming edges in vi

multiplied by |R| is greater than or equal to the number of edges outgoing from

vi, vertex vi can have outgoing edges only if it has at least an incoming edge.

Vertex v0 is instead implicitly set as the root of the resulting tree structure.

The second property, that is, the fact that all material vertices must belong

to the computed user tree is modeled by requiring that each material vertex, but

v0, has exactly one incoming edge. Note that we can only impose constraints

on incoming edges, since a material vertex could be a leaf of the computed user

tree. The weight minimization problem can then be formally modeled as an

integer linear programming problem as follows.

Definition 5.1 (ILP minimum user tree). Given an access matrix A over

a set U of users and a set R of resources and the weight function w in Defini-

tion 4.1, the ILP minimum user tree problem is a problem formulated as follows.

Minimize
∑

(vi,vj)∈EU

w(vi, vj) xi,j

subject to 1)
∑

vi∈VU ,(vi,vj)∈EU

xi,j ≤ 1, ∀ vj∈VU\M;

2) |R|·
∑

vi∈VU ,(vi,vj)∈EU

xi,j ≥
∑

vk∈VU ,(vj ,vk)∈EU

xj,k, ∀ vj∈VU\{v0};

3)
∑

vi∈VU ,(vi,vj)∈EU

xi,j = 1, ∀ vj∈M\{v0};

4) xi,j∈{0,1}, ∀ (vi, vj)∈EU .

It is immediate to see that the integer linear programming formulation of

the minimum user tree problem exactly represents the problem of computing

a minimum weight user tree rooted in v0. The objective function models the

minimization requirement. The first set of constraints requires that each non
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Figure 4: User tree and key rings resulting from the resolution of the ILP minimum user tree

problem

material vertex in the user graph has at most one incoming edge in the user

tree. The second set of constraints requires that only vertices having at least

an outgoing edge must have an incoming edge in the user tree. The third set

of constraints requires that each material vertex has exactly an incoming edge

in the user tree and therefore that it belongs to the user tree. Finally, the

fourth set of constraints states that the variables associated with the edges of

the user graph can only assume value 1 or 0, modeling the presence or not of

the corresponding edge in the computed user tree.

As an example, consider the access matrix in Figure 1(a) and the user graph

in Figure 1(b). The solution computed by the LPsolve integer linear program-

ming tool [15] of the corresponding ILP minimum user tree problem assigns

value 1 to variables x0,1, x0,2, x1,5, x1,6, x1,7, x2,8, x5,11, x5,12, x8,14, and value

0 to all other variables. Figure 4 illustrates the resulting optimal user tree and

key rings.

6. Minimum spanning tree heuristics

We now propose three families of heuristics for solving Problem 3.1. All

the proposed heuristics are based on the computation of a minimum spanning

tree (MST) over a graph G = 〈V, E′, w〉, with V = M, E′ = {(vi, vj) | vi, vj ∈

12



Case (U=vk.acl=vi.acl∩vj.acl) Initial configuration Final configuration weight red(vpi ,vpj ,vi,vj)

1 U=vi.acl

vpi
vpj

vi vj

v

vpi
vpj

vi

vj

|vi.acl | − |vpj .acl |

U=vj .acl

vpi
vpj

vi vj

v

vpi
vpj

vj

vi

|vj .acl | − |vpi .acl |

2 vk ∈ V and vk 6=vi and vk 6=vj

vpi
vpj vk

vi vj

vpi
vpj vk

©©
© 77

7

vi vj

2 |U | −(|vpi .acl | + |vpj .acl |)

3

vk 6∈ V and either

◦ vpi .acl ⊂ U and vpj .acl 6⊂ U or

◦ vpi .acl ⊂ U , vpj .acl ⊂ U , and

|U | − |vpj .acl | ≥ |U | − |vpi .acl |

vpi
vpj

vi vj

v

vpi
vpj

vk

¥¥
¥ :::

vi vj

|U | − |vpj .acl |

vk 6∈ V and either

◦ vpj .acl ⊂ U and vpi .acl 6⊂ U or

◦ vpi .acl ⊂ U , vpj .acl ⊂ U , and

|U | − |vpi .acl | > |U | − |vpj .acl |

vpi
vpj

vi vj

v

vpi
vpj

vk

¥¥
¥ ;;;

vi vj

|U | − |vpi .acl |

vk 6∈ V and vpi .acl 6⊂ U

and vpj .acl 6⊂ U

vpi vt vpj

vi vj

v

vpi vt vpj

vk

§§
§ 888

vi vj

|vt.acl |+|U | −(|vpi .acl | + |vpj .acl |)

Figure 5: Possible updates to the user tree

V ∧vi.acl ⊂ vj .acl}, w the weight function defined in Definition 4.1, and where

the root vertex is v0. The MST over G is a user tree whose weight can be further

reduced with the addition of non-material vertices that represent sets of users

resulting from the intersection of the acls of at least two vertices already in the

MST. To better understand the reason for which the insertion of such a kind of

vertices may cause a reduction of the weight, consider two vertices, say vi and

vj , in the MST. The possibly insertion of a new vertex vk.acl=vi.acl∩vj .acl as a

parent of vi and vj can reduce the weight of the tree since the key ring of users in

vk.acl should only include vk.key instead of both vi.key and vj .key. Let vpi and

vpj be the unique direct ancestor of vertex vi and of vertex vj , respectively. The

weight reduction is formally defined by function weight red :V×V×V×V→ N,

that given vertices vi, vj , vpi , and vpj returns a value computed according to

whether vertex vk.acl=vi.acl ∩ vj .acl exists in the tree. The following three
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cases, represented in Figure 5, may occur.

Case 1 vk=vi (or vk=vj), that is, one of the two vertices represents a subset of

the users represented by the other vertex. The user tree can be updated

by removing the edge connecting vertex vpj
with vj (vpi

with vi, resp.)

and by inserting the edge connecting vi with vj (vj with vi, resp.). As

a consequence, the weight of the tree is reduced by w(vpj
, vj) − w(vi, vj)

(w(vpi , vi)− w(vj , vi), resp.), which is equal to |vi.acl| − |vpj .acl| (|vj .acl|
− |vpi .acl|, resp.).

Case 2 vk ∈ V and vk 6=vi and vk 6=vj , that is, there is a vertex in the tree

representing the set U = vi.acl ∩ vj .acl of users. The user tree can be

updated by removing the edge connecting vertex vpi with vi and the edge

connecting vpj with vj , and by inserting two new edges connecting vk with

vi and vj , respectively. As a consequence, the weight of the tree is reduced

by w(vpi , vi) + w(vpj , vj)− (w(vk, vi) + w(vk, vj)), which is equal to 2|U |
− (|vpi .acl |+|vpj .acl |).

Case 3 vk 6∈ V , that is, there is no vertex representing the set U = vi.acl∩vj .acl

of users in the tree. The user tree can be updated by removing the edges

connecting vpi and vpj with vi and vj , respectively, and inserting three

new edges connecting: 1) vk with vi, 2) vk with vj , and 3) a vertex in V

with vk that can be chosen among the following three vertices.

• vpi : if either vpi .acl ⊂ U and vpj .acl 6⊂ U , or if vpi .acl ⊂ U , vpj .acl ⊂
U , and the cardinality of the set of users represented by vpi is greater

than or equal to the cardinality of the set of users represented by

vpj (i.e., |U | − |vpj .acl | ≥ |U | − |vpi .acl |). The weight of the tree is

reduced by w(vpi , vi)+w(vpj , vj)−(w(vk, vi)+w(vk, vj)+w(vpi , vk)),

which is equal to |U | − |vpj .acl |.

• vpj : if either vpj .acl ⊂ U and vpi .acl 6⊂ U , or if vpi .acl ⊂ U , vpj .acl ⊂
U , and the cardinality of the set of users represented by vpj is greater

than the cardinality of the set of users represented by vpi (i.e., |U | −

14



|vpi
.acl | > |U | − |vpj

.acl |). The weight of the tree is reduced by

w(vpi , vi) + w(vpj , vj) − (w(vk, vi) + w(vk, vj) + w(vpj , vk)), which is

equal to |U | − |vpi
.acl |.

• vt: if vpi .acl 6⊂ U , vpj .acl 6⊂ U , and vt is a vertex in the set

P={v∈V |v.acl⊆vk} of candidate parents of vk such that |vt.acl | con-

tains the maximum number of users. The weight of the tree is then

reduced by w(vpi , vi)+w(vpj , vj)− (w(vk, vi)+w(vk, vj)+w(vt, vk)),

which is equal to |vt.acl |+|U | −(|vpi
.acl | + |vpj

.acl |).
Note that in principle the direct ancestor of vertex vk can always be

chosen as the vertex in the set P of candidate parent vertices whose

acl contains the maximum number of users. However, since this se-

lection process is expensive, we decide to use vpi or vpj as a direct

ancestor of vk whenever it is possible.

The three families of heuristics differ in the pairs of vertices considered for

weight reduction: the sibling-based (S) family considers only pairs of sibling

vertices; the leaf-based (L) family considers only pairs of vertices that are not

sibling and where at least one vertex is a leaf; and the mixed (M) family consid-

ers pairs of vertices without imposing any constraint on the vertices involved.

Among all possible candidate pairs of vertices, the pairs 〈vi,vj〉 that maximize

the reduction of the weight of the user tree is then chosen. Note that different

pairs of vertices may provide the same maximum weight reduction. In this case,

different preference criteria may be applied for choosing a pair. In particular,

we propose the following three criteria:

• rnd: at random;

• max: in such a way that | vi.acl | + | vj .acl | is maximum, ties are broken

randomly;

• min: in such a way that | vi.acl | + | vj .acl | is minimum, ties are broken

randomly.
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INPUT

set U of users

set R of resources

access matrix A
heuristic (S, L, or M)

criterion (rnd, max, or min)

OUTPUT

user tree T= 〈V ,E〉

MAIN

V := ∅
E := ∅
/* Phase 1: select material vertices */

AclM := {acl(r)|r∈R} ∪ {∅}
for each acl∈AclM do

create vertex v

v.acl := acl

V := V ∪ {v}
/* Phase 2: compute a minimum spanning tree */

E ′ := {(vi,vj) | vi,vj∈V ∧ vi.acl⊂vj .acl}
let w be a weight function such that ∀(vi, vj) ∈ E ′, w(vi,vj) = |vj .acl \ vi.acl |
G := (V ,E ′,w)

let v0 be the vertex in V with v0.acl=∅
T := Minimum Spanning Tree(G,v0)

/* Phase 3: insert non-material vertices */

case heuristic of

S: T := Factorize Siblings(T , criterion)

L: T := Factorize Leaves(T , criterion)

M : T := Factorize Vertices(T , criterion)

return(T )

Figure 6: Heuristic algorithm for computing a minimal user tree

Any of these three preference criteria in combination with the three families

of heuristics discussed above can be used to compute an approximation of the

minimum user tree. Figure 6 illustrates a heuristic algorithm that, given an au-

thorization policy represented through an access matrix A, the identification of

a heuristic family (i.e., S, L, or M), and a preference criterion (i.e., rnd, max, or

min) as input, creates a user tree correctly enforcing the policy. The algorithm

creates the set V of material vertices and builds a graph G, where the set of

vertices coincides with the set V of material vertices and the set E′ of edges
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includes an edge (vi,vj) for each pair of vertices vi,vj∈V such that vi.acl⊂vj .acl.

The algorithm then calls function Minimum Spanning Tree3 on G and ver-

tex v0, with v0.acl = ∅, and returns a minimum spanning tree of G rooted at

v0. On such a minimum spanning tree, the algorithm calls a function aimed at

reducing the weight of the user tree. The function called depends on the iden-

tification of the family of heuristics given in input to the algorithm: functions

Factorize Siblings, Factorize Leaves, and Factorize Vertices correspond

to the sibling-based, leaves-based, and mixed family, respectively. All these

functions take a minimum spanning tree and a preference criterion as input and

return a minimal user tree. We now describe the three families of heuristics in

more details.

6.1. Sibling-based heuristic

The basic idea behind this family of heuristics is that for each internal vertex

v of the minimum spanning tree with at least two children the set of candidate

pairs CCv = {〈vi,vj〉 | vi 6=vj ∧ (v,vi), (v,vj) ∈ E ∧ vi.acl ∩ vj .acl 6= v.acl} is

computed. For each pair 〈vi,vj〉 in CCv we then evaluate if the insertion in T

of vertex vk representing U = vi.acl ∩ vj .acl can reduce weight(T ). The three

preference criteria previously discussed can be used to choose, among all pairs

in CCv , the pair 〈vi,vj〉 that, when vk is possibly inserted in the tree (and it

becomes the parent of vertices vi and vj), produces the highest reduction of the

weight of the tree.

As an example, consider the weighted user tree in Figure 3 and suppose to

compute the intersection between the pairs of children of the root vertex v0.

In this case, all possible intersections correspond to user A that is not already

represented in the tree and therefore each intersection requires the addition of

a new vertex in the tree as child of v0 and as parent of the considered pair of

children.

3This function may correspond to any algorithm commonly used for computing a minimum

spanning tree. Our implementation is based on Prim’s algorithm.
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FACTORIZE SIBLINGS(ST ,criterion)

let ST be 〈V ,E〉
for each v∈{vi | vi∈V ∧ ∃(vi,vj),(vi,vl) ∈E, vj 6=vl} do

repeat

CCv := {〈vi,vj〉 | vi 6=vj ∧ (v,vi), (v,vj) ∈ E ∧ vi.acl ∩ vj .acl 6= v.acl}
if CCv 6=∅ then

max red := max{weight red(v,v,vi,vj) | 〈vi,vj〉 ∈ CCv}
ST := Update Tree(ST ,CCv ,max red,criterion)

until CCv=∅
return(ST )

Figure 7: Function Factorize Siblings implementing the sibling-based heuristic

Figure 7 illustrates the pseudocode of function Factorize Siblings, which

implements the weight reduction strategy above described. Function Factor-

ize Siblings takes a minimum spanning tree ST and a preference criterion as

input and returns a minimal user tree. For each internal vertex v in ST with

at least two children (first for loop in the function), the function evaluates the

possible insertion of a vertex vk as a parent for each pair of children of v. At

each iteration of the internal repeat-until loop, the set CCv of pairs of candi-

date children of v is computed.4 If CCv is not empty, the function determines

the maximum reduction max red of the weight of the tree that any of these

pairs can cause and calls function Update Tree. This function, illustrated in

Figure 8, receives as input a tree T , a set CC of pairs of vertices, the maximum

weight reduction max red that these pairs can cause, and a preference criterion

criterion. Depending on the criterion given in input, function Update Tree

chooses a pair in CC that maximizes the weight reduction and then modifies the

tree as illustrated in Figure 5. The repeat-until loop stops when CCv becomes

empty. Function Factorize Siblings terminates when all internal vertices have

been evaluated (i.e., when the for loop has iterated on all internal vertices).

4Note that CCv does not need to be recomputed at each iteration of the repeat-until

loop, since it can be simply updated by removing the pairs involving the vertices appearing

in the pair selected by function Update Tree, and possibly inserting the pairs that include

the vertex (if any) added to the user tree.
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UPDATE TREE(T ,CC,max red,criterion)

let T be 〈V ,E〉
MC := {〈vi,vj〉 | 〈vi,vj〉 ∈CC ∧ weight red(vpi

,vpj
,vi,vj)=max red}

case criterion of

rnd: choose 〈vi,vj〉∈MC randomly

max: choose 〈vi,vj〉∈MC : |vi.acl|+|vj .acl| is maximum

min: choose 〈vi,vj〉∈MC : |vi.acl|+|vj .acl| is minimum

U := vi.acl∩vj .acl

find vk∈V : vk.acl=U

case vk of

/* case 1 */

=vi: E := E \ {(vpj
,vj)} ∪ {(vi,vj)}

=vj : E := E \ {(vpi
,vi)} ∪ {(vj ,vi)}

/* case 2 */

6=vi ∧ 6=vj : E := E \ {(vpi
,vi),(vpj

,vj)} ∪ {(vk,vi),(vk,vj)}
/* case 3 */

UNDEF: create a vertex vk

vk.acl := U

V := V ∪ {vk}
if vpi

.acl ⊂ U ∧ vpj
.acl 6⊂ U then vpk

:= vpi

if vpj
.acl ⊂ U ∧ vpi

.acl 6⊂ U then vpk
:= vpj

if vpi
.acl 6⊂ U ∧ vpj

.acl 6⊂ U then

let vt∈{v∈V |v.acl⊆U} : |vt.acl| is maximum

vpk
:= vt

if vpi
.acl ⊂ U ∧ vpj

.acl ⊂ U then

if |U | − |vpj
.acl| ≥ |U | − |vpi

.acl| then vp := vpi

else vpk
:= vpj

E := E \ {(vpi
,vi),(vpj

,vj)} ∪ {(vpk
,vk),(vk,vi),(vk,vj)}

return(T )

Figure 8: Function Update Tree implementing the user tree updates in Figure 5

As an example, consider the authorization policy A in Figure 1(a). The

table in Figure 9 is composed of three columns, one for each preference criteria

(i.e., rnd, max, and min). Each column represents the user tree and the user

key rings computed by the sibling-based heuristic following the corresponding

preference criterion. Note that in Figure 9 the non-material vertices inserted by

function Factorize Siblings are circled.
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Figure 9: User trees and key rings computed by the sibling-based heuristic over the MST in

Figure 3

6.2. Leaves-based heuristics

This family of heuristics applies the same factorization process described

for the sibling-based family but on the leaves of the tree only. For each leaf

vertex v of the minimum spanning tree ST= 〈V ,E〉, the set of candidate pairs

is computed as CCv = {〈v,vi〉 | vi∈V \(Sv ∪Av) ∧ v.acl ∩ vi.acl 6= ∅}, where Sv

and Av are the sets of siblings and ancestors of v in ST , respectively. Like for

the sibling-based family, for each pair 〈vi,vj〉 in CCv we evaluate if the insertion

in T of vertex vk representing U = vi.acl ∩ vj .acl can reduce weight(T ). Among

all pairs producing the same highest weight reduction, a pair is chosen according

to the given preference criterion.

Figure 10 illustrates the pseudocode of function Factorize Leaves, which

implements the weight reduction strategy above described over a given spanning

tree ST . Function Factorize Leaves takes a minimum spanning tree ST and

a preference criterion as input and returns a minimal user tree. For each leaf

vertex v in ST , the function computes the sets Sv and Av of the sibling and

ancestor vertices of v in ST , respectively. It then determines the set CCv of

candidate pairs of vertices 〈v,vi〉, where vi is a vertex in the tree that is neither a

sibling nor an ancestor of v and such that v and vi represent two sets of users with

at least a common element. The function computes the maximum reduction
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FACTORIZE LEAVES(ST ,criterion)

let ST be 〈V ,E〉
for each v∈{vi | vi∈V ∧ @(vi,vj)∈E} do

Sv := {vi | vi∈V ∧ ∃vp∈V :(vp ,vi),(vp ,v)∈E}
Av := {vi | vi∈V ∧ ∃ a path in ST from vi to v}
CCv := {〈v,vi〉 | vi∈V \(Sv∪Av ) ∧ v.acl∩vi.acl 6=∅}
max red := max{weight red(vpi

,vpj
,vi,vj) | 〈vi,vj〉 ∈ CCv}

if max red>0 then ST := Update Tree(ST ,CCv ,max red,criterion)

return(ST )

Figure 10: Function Factorize Leaves implementing the leaves-based heuristic

r1 r2 r3 r4 r5

A 1 1 1 1 0

B 0 0 1 1 1

C 0 1 1 0 1

D 0 1 0 1 1

E 0 0 1 0 1

Figure 11: An example of access matrix

max red of the weight of the tree that any of the pairs in CCv can cause and,

if such a reduction is a positive value, calls function Update Tree that works

as discussed for the previous family of heuristics. Function Factorize Leaves

terminates when all the leaves in the tree have been evaluated (i.e., when the

for loop has iterated on all leaves).

We note here that, since the sibling-based and leaves-based families work

on disjoint sets of candidate pairs of vertices, they may compute different user

trees with different weights. As an example, consider the access control policy

represented by the access matrix in Figure 11. The table in Figure 12 represents

the user trees and the corresponding key rings computed by the two heuristics.

The first column in the table reports the minimum spanning tree over material

vertices. The second and the third columns report the user tree and the user

key rings computed by the sibling-based heuristic and the leaves-based heuristic,

respectively, with the max preference criterion. Note that, in this case, the

leaves-based heuristic computes a user tree with a lower weight than the one
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Figure 12: User trees and key rings computed by the sibling-based and leaves-based heuristics

for the access matrix in Figure 11

computed by the sibling-based heuristic.

6.3. Mixed heuristics

This family of heuristics is obtained by combining the strategies proposed

for the sibling-based and leaves-based families. In this case, the computation of

a minimal user tree is performed by taking into consideration a set of candidate

pairs which is obtained by merging the candidate pairs considered by the two

previous families. Again, one of the three preference criteria previously discussed

can be applied for selecting one of the pairs that produces the highest reduction

of the weight of the tree.

Figure 13 illustrates the pseudocode of function Factorize Vertices, im-

plementing a weight reduction process operating on both the internal vertices

and the leaves of a given spanning tree ST . Function Factorize Vertices takes

a minimum spanning tree ST and a preference criterion as input and returns

a minimal user tree. At each iteration of the repeat-until loop, the function

builds the set of all possible candidate pairs of vertices CC for the current topol-
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FACTORIZE VERTICES(ST ,criterion)

let ST be 〈V ,E〉
repeat

CC := ∅
for each v∈{vi | vi∈V ∧ ∃(vi,vj)∈E} do

CC := CC ∪ {〈vi,vj〉 | vi 6=vj ∧ (v,vi), (v,vj) ∈ E ∧ vi.acl ∩ vj .acl 6= v.acl}
for each v∈{vi | vi∈V ∧ @(vi,vj)∈E} do

Sv := {vi | vi∈V ∧ ∃vp∈V :(vp ,vi),(vp ,v)∈E}
Av := {vi | vi∈V ∧ ∃ a path in ST from vi to v}
CC := CC ∪ {〈v,vi〉 | vi∈V \(Sv∪Av ) ∧ v.acl∩vi.acl 6=∅ ∧ weight red(vp ,vpi

,v,vi)≥0}
ifCC 6=∅ then

max red := max{weight red(vpi
,vpj

,vi,vj) | 〈vi,vj〉 ∈ CC}
ST := Update Tree(ST ,CC,max red,criterion)

until CC=∅
return(ST )

Figure 13: Function Factorize Vertices implementing the factorization process for both

sibling and leaf vertices

ogy of the tree.5 For each internal vertex v in ST (first for loop in the function),

the function computes the set of candidate pairs 〈vi,vj〉 of children of v such

that vi.acl ∩ vj .acl 6= v.acl and inserts these pairs in CC. Then, for each leaf v

in ST (second for loop in the function), it computes and inserts in CC the set

of pairs 〈v,vi〉, where vi is a vertex in the tree that is neither a sibling nor an

ancestor of v and such that v.acl and vi.acl have at least a user in common and

cause a positive weight reduction. If CC is not empty, the function determines

the maximum reduction max red of the weight of the tree that any of the pairs

in CC can cause and calls function Update Tree. The function terminates

when CC is empty and, therefore, when the weight of the user tree cannot be

further reduced.

To conclude the discussion about the mixed heuristic we note that, since

this heuristic takes advantage of both the strategies adopted by the sibling-

5As already pointed out for the sibling-based heuristic, the set CC of candidate pairs of

vertices does not need to be recomputed at each iteration of the repeat-until loop, but it

can be updated considering the updates to the topology of the tree performed by function

Update Tree.
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Figure 14: User tree (a) and key rings (b) computed by the mixed heuristics for the access

matrix in Figure 11

based and the leaves-based heuristics, it computes a user tree that can have a

weight less that the weight of the trees computed by the other two heuristics. As

an example, consider the access control policy represented by the access matrix

in Figure 11. Figure 14 illustrates the user tree and the corresponding user key

rings computed by the mixed heuristic, when the max preference criterion is

applied. It is immediate to see that the computed solution merges the benefits

of both the sibling-based and the leaves-based heuristics, thus producing a tree

with a lower weight. We also note that if on one hand the solution computed

by this heuristic is in general better than the solution computed by the other

heuristics, on the other hand the computation of all the possible candidate

pairs of vertices is more expensive than the corresponding process of the other

heuristics. However, as the experimental results described in Section 7 show,

the computational time of this third heuristic is acceptable, while the quality of

the solution outperforms both the sibling-based and the leaves-based heuristics.
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Number of 5 users 6 users 10 users

resources tot min max rnd tot min max rnd tot min max rnd

5 937 932 924 927 865 863 830 834 828 802 692 709

10 879 872 849 849 778 693 648 657 709 633 219 269

15 947 946 936 936 735 720 637 634 729 685 168 205

20 987 983 979 982 780 751 671 685 717 626 118 120

25 1000 998 998 998 781 763 705 714 694 598 90 131

30 1000 1000 1000 1000 846 835 808 815 626 543 77 131

35 891 886 853 858 554 484 64 104

40 943 940 924 928 570 538 59 85

45 981 978 966 973 501 488 57 68

50 993 992 989 991 501 478 55 67

Figure 15: Number of times that the sibling-based heuristic with different preference criteria

is better than the heuristic in [5]

7. Experimental results

In large scale access control systems with a huge number of users and re-

sources, the time needed to set the right key assignment scheme can be consid-

erably large. A correct evaluation of the performance of the proposed heuristics

is requested to provide the system designer with a valid set of tools she can

use for the selection of the strategy that provides the best trade-off between the

quality of the solution returned by the selected heuristic and the amount of time

invested in obtaining such a result. The heuristics have been implemented by

using Scilab [15] Version 4-1 on Windows XP operating system. We ran the ex-

periments on a computer equipped with Centrino 1,7 Mhz CPU, with randomly

generated access matrices, considering different numbers of users and resources

in the system.

A first set of experiments has been devoted to compare the solutions re-

turned by our three families of heuristics on the basis of the rnd, max, and min

preference criteria with the heuristic in [5]. The goal is to verify whether there is

a preference criterion that works better than the others. In these experiments,

the number of users varies from 5 to 10 and, for a given number n of users,

the number of resources varies from 5 to 2n, since 2n is the maximum number

of vertices in the user tree. For each configuration (i.e., for a fixed number of
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# [5] S L M

Res. d = 0 d = 1, 2 d > 2 d = 0 d = 1, 2 d > 2 d = 0 d = 1, 2 d > 2 d = 0 d = 1, 2 d > 2

5 93 7 0 82.3 16.2 1.5 1.8 11.9 86.3 92.8 7.2 0

10 50.8 44.1 5,1 61.3 34.5 4,2 0 3,5 96,5 79,4 20.1 0.5

15 35.7 46.4 17.9 46.4 42.2 11.4 0.1 1.7 98.2 75.5 23.4 5.1

20 29.2 43.1 27.7 36.9 47 16.1 0.1 0.5 99.4 76.2 22.1 1.7

25 30.3 38.3 31.4 31.5 45.5 23 0.1 0.3 99.6 72.8 24.1 3.1

30 29 37.4 33.6 28.4 42.2 29.4 0 0 100 74 23.6 2.4

35 31.3 34.7 34 24.1 39.5 36.4 0 0.3 99.7 74.5 21.4 4.1

40 34 34.9 31.1 20.6 40.2 39.2 0 0.4 99.6 70.5 24.4 5.1

45 38.1 33.9 28 16.8 35.4 47.8 0 0.1 99.9 70.4 23.2 6.4

50 36 37.2 26.8 15 33.5 51.5 0 0 100 69.5 23.4 7.1

Figure 16: Percentage of times each heuristic returns a solution at distance d from the lowest

weight solution computed.

users and resources), we generated 1000 access matrices and, for each access ma-

trix, we applied the heuristic proposed in [5] and the three families of heuristics

previously discussed, considering all possible preference criteria. Since the ex-

perimental results for the three families of heuristics are quite similar, Figure 15

illustrates only the results for the sibling-based heuristic. This figure reports

the number of times the sibling-based heuristic, adopting the preference crite-

rion indicated as the label of the column, computes a user tree with a weight

lower than or equal to the weight of the tree obtained by running the heuristic

in [5]. Column tot lists the number of times that the sibling-based heuristic

(adopting one of the three preference criteria) returns a solution better than

the one returned by the heuristic in [5]. By comparing each column tot with

the corresponding min, max, and rnd columns we see that, in the majority of

the cases, the better solution is obtained with the min criterion while there are

only few cases where the max or rnd criteria perform better. This behavior has

been confirmed by the results obtained by running the same experiments with

the other two families of heuristics (leaves-based and mixed).

A second set of experiments has been run to compare the solutions returned

by our three families of heuristics adopting the min preference criterion (which

results to be the better criterion) with the heuristic in [5]. The goal is to evaluate
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Figure 17: Execution time (in seconds) for the heuristics for 10 users (1000 runs)

the famility of heuristics that works better and to analyze the execution time

of all the heuristics. To this purpose, we considered configurations with 10

users and with a number of resources that varies in the range 5 to 50. Like

in the previous set of experiments, for each configuration we generated 1000

access matrices. Figure 16 reports the results obtained. Each column in the

table is dedicated to a different heuristic and gives the percentage of times the

weight of the tree computed with the heuristic labeling the column is at distance

0, included between 1 and 2, or greater than 2 from the weight of the better

user tree (i.e., the tree with the lowest weight) computed by one of the four

implemented algorithms. On the basis of the data reported in Figure 16, we

observe that the sibling-based and the mixed heuristics compute a solution that,

in many cases, is better than the one returned by the heuristic in [5]. The leaves-

based heuristic provides worse quality solutions, even if in few cases it returns

the user tree with the lowest weight among the four heuristics considered in the

comparison.
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Figure 17 reports the execution times for all the considered configurations.

The execution time is composed of the time for the construction of the graph

G (see Section 4), the time for the construction of the minimum spanning tree

on G, and the time for the execution of the selected heuristic. As shown in

the figure, the sibling-based and the leaves-based heuristics are very efficient

compared with the heuristic in [5]. Considering that, in most of the cases,

the sibling-based heuristic returns a solution better than or equal to the one

computed by the heuristic in [5], it represents a good trade-off between quality

of the solution and execution time. Compared with the sibling-based and leaf-

based heuristics, the mixed heuristic returns better quality solutions, computing

the user tree with the lowest weight for most of the considered access matrices.

However, the execution time of the mixed heuristic is higher than the time

requested by the other heuristics.

We have also performed experiments on the integer linear programming for-

mulation of the problem. The experiments showed high variability of the time

necessary to solve the ILP problem, even assuming a fixed number of users and

resources in the system. This variability is due to the fact that the execution

time depends on the number of constraints and variables of the ILP problem,

which is dictated by the number of authorizations. For instance, with a configu-

ration of 10 users and 10 resources we randomly generated 1000 access matrices

that result in 1000 different instances of the ILP problem, where the number of

constraints and variables vary in the range of 35–80 and 40–140, respectively.

The corresponding execution time varies in the range of 0, 4–8000 seconds. We

however observed that, on average, the number of constraints and variables in

the ILP problem grows with the number of users and resources in the system.

Also, as expected, the time necessary to solve the ILP problem is always higher

than the execution time of our heuristics, while the weight of the user tree is

often very close to the weight of the trees computed by the heuristics.
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8. Related work

Previous related work is in the area of the “database-as-a-service”

paradigm [3, 16], which considers the problem of database outsourcing with

the main goal of enabling data owners to outsource their data to, possibly non

fully trusted, third parties. This new scenario requires the evaluation of differ-

ent security issues, which have been recently addressed in the literature (e.g.,

evaluation of queries on encrypted data, inference exposure control, integrity).

Most of the existing efforts on this topic however focus on the proposal of tech-

niques for the evaluation of queries on encrypted outsourced data, with the

goal of supporting different SQL clauses and different kinds of conditions over

attributes [2, 3, 4, 16, 17, 18]. These proposals are based on the definition of

indexing information, which is stored together with the encrypted data, that

reflects certain characteristics of the original data and that can therefore be

exploited for partial query evaluation at the server side. The first proposals in

this direction [3, 16] support simple queries with equality conditions only. In [2]

the authors propose a solution, based on the B+ tree data structure used by

relational DBMSs for physically index data, that supports range queries besides

equality queries. They also first provide an evaluation of the inference exposure

that the public availability of indexing information can cause, proving that even

a limited number of indexes can greatly facilitate the task for an adversary that

wants to violate the confidentiality provided by encryption. A recent proposal,

illustrated in [4], tries to minimize inference exposure by defining indexes with

an almost flat distribution of the frequencies of the values in the index domain.

This proposal exploits B-trees for supporting both equality and range queries.

A few research efforts have directly tackled the issues of access control in an

outsourced scenario. In [8] the authors first present a framework for enforcing

access control on published XML documents by using different cryptographic

keys over different portions of the XML tree and by introducing special metadata

nodes in the structure. In [5] the authors instead address the issue of access

control enforcement in the database outsourcing context, by exploiting selective
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encryption and hierarchical key assignment schemes on trees. To grant users

efficient access to resources, the authors propose an algorithm that minimizes the

number of secret keys in users’ key rings. A related line of research has studied

solutions for efficient policy updates [6, 19]. Here, two layers of encryption are

imposed on data: the inner layer is imposed by the owner for providing initial

protection, the outer layer is imposed by the server to reflect policy modifications

(i.e., grant/revoke of authorizations). Even if these works exploit DAG key

derivation hierarchies, they can be easily adapted to the solution proposed in

this paper.

9. Conclusions and future work

There is an emerging trend towards scenarios where resource management

is outsourced to an external service providing storage capabilities and high-

bandwidth distribution channels. In this context, selective dissemination of

data requires enforcing measures to protect the resource confidentiality from

both unauthorized users and “honest-but-curious” servers. In this paper, we

addressed this issue by integrating access control and encryption and by ex-

ploiting key derivation methods as a way for minimizing the number of keys

distributed to users. In particular, we presented three families of heuristics for

building a key derivation tree that correctly enforces the authorization policy

defined by the data owner and an integer linear programming formulation of the

minimization problem. The experimental results obtained by the implementa-

tion of the heuristics prove their efficiency with respect to previous solutions.

Future work includes the investigation of the problem of updating the deriva-

tion tree upon changes in the authorization policy. Possible directions include:

1) re-executing the heuristics every time there is a change in the authoriza-

tion, 2) performing a simple adaptation of the tree to reflect the authorization

changes (and possibly re-execute the heuristics periodically if the quality of the

tree degenerates), or 3) applying over-encryption solutions [6].
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A. NP-hardness of the minimization problem

To prove the hardness of Problem 3.1, we reduce it, in polynomial time,

to an instance of the Vertex Cover problem. The problem of determining the

minimum vertex cover of an undirected graph is a classical NP-hard optimization

problem [20] that can be formulated as follows.

Definition A.1. Vertex Cover. Given an undirected graph G = (V, E), find

a smallest subset S ⊆ V such that every edge in E is incident on at least one of

the vertices in S. The set S is called a vertex cover of graph G.

Before proving the NP-hardness of Problem 3.1, we prove the following

lemma

Lemma A.1. Let A be an access matrix over a set U of users and a set R of

resources, and GU = 〈VU ,EU 〉 be the user graph over U . The computation of

a minimum user tree T subgraph of GU that correctly enforces A is equivalent

to the computation of a minimum user tree T subgraph of G′U = (I(M), E′
U ),

where I(M)⊆ P (U) is the smallest set including all material vertices M for

A and closed under the intersection operator, and E′
U = {(vi, vj) | vi.acl ⊂

vj .acl and vi, vj ∈ I(M)}.

Proof. For the sake of contradiction, assume that a vertex v is such that

v 6∈ I(M) and v belongs to T . Notice that, only one vertex w ∈ M can

belong to the subtree Tv rooted at v (otherwise, vertex v has to belong to

I(M)). Hence, we can construct a new user tree T ′ by removing subtree Tv

and connecting vertex w to v’s parent. The new user tree T ′ is such that

weight(T ′) ≤ weight(T ). We can then conclude that any vertex v 6∈ I(M)

does not belong to a minimum user tree.

We also note that to compute a minimum user tree, instead of considering

the graph G′U = (I(M), E′
U ), we can consider its transitive reduction6 ĜU =

6The transitive reduction of a graph G = (V, E) is the smallest subgraph G′ = (V, E′) such

that that the transitive closure of G′ is the same as the transitive closure of G.

34



(I(M), ÊU ). Since the graph G′U is finite and acyclic, then it is known that its

transitive reduction ĜU is unique. We are now ready to prove the NP-hardness

of Problem 3.1

Theorem 4.1 (NP-hardness). Let A be an access matrix over a set U of

users and a set R of resources. The problem of computing a minimum weight

user tree T correctly enforcing A is NP-hard.

Proof. Let G = (VG, EG) be an undirected graph. Construct the access

matrix A over the set U of users and the set R of resources such that, for any

vertex v ∈ VG there is a user uv ∈ U and for any edge (v, w) ∈ EG there is a

resource r with acl(r) = {uv, uw}. This reduction can be done in polynomial

time. Notice that, by a little abuse of notation: the set of material vertices M
is equal to {v∅}∪EG; its closure, with respect to the intersection, I(M) is equal

to {v∅} ∪ VG ∪ EG; and |EG| = |R|.
Let T be the minimum user tree correctly enforcing A computed over the graph

ĜU = (I(M), ÊU ). Since all edges in ÊU have weight one and all vertices in

M must belong to T , then T contains t + |M| = t + |R|+ 1 vertices, for some

non-negative integer t, and weight(T ) = t + |R|. Such an observation implies

that the remaining t vertices in T are from VG and they are connected to all

vertices representing R (e.g., EG) – such t vertices correspond to a vertex cover

in G. Thus, the graph G has a vertex cover of size t if and only if the minimum

user tree T correctly enforcing A computed over the graph ĜU = (I(M), ÊU )

has cost equal to t+ |R|. This proves that the problem of computing a minimum

user tree T correctly enforcing A is NP-hard.
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