
Assessing Efficiency of Trust Management in Peer-to-Peer Systems

R. Aringhieri E. Damiani S. De Capitani di Vimercati P. Samarati
Università di Milano

Dipartimento di Tecnologie dell’Informazione
Via Bramante 65, 26013 Crema (CR), Italy

{aringhieri,damiani,decapita,samarati}@dti.unimi.it

Abstract

P2P applications support exchanging resources while
preserving total or partial anonymity of both requestors and
providers. However, concerns have been raised about the
possibility that anonymity may encourage malicious peers
to spread tampered-with resources (e.g., malicious pro-
grams and viruses). A considerable amount of research is
now being carried out on the development of trust and rep-
utation models in P2P networks. In this paper, we assess
the efficiency of our approach to the design of reputation
systems involving flexible techniques for collecting and ag-
gregating peers’ opinions via comparison with probabilistic
approaches.

1. Introduction

A key requirement for large scale Peer-to-Peer (P2P) net-
works is allowing for different degrees of anonymity dur-
ing interactions. In particular, full anonymity is widely ac-
knowledged to be of paramount importance for establish-
ing free marketplaces in many application environments [7].
On the other hand, anonymity is critical in presence of rogue
peers, and there is increasing interest in systems capable of
keeping the consequences of hostile behavior under control.
In our previous work [5] we described a distributed voting
algorithm for collecting other peers’ views on a proposed
transaction based on a two-step-technique: i) we poll the
community of P2P users for collecting the different reputa-
tions on a candidate peer p, and ii) we merge the different
opinions in a single value by means of a fuzzy aggrega-
tion [10]. The result of the vote is a quantitative estimation
summarizing peers’ evaluations that, taken individually, are
subjective, dynamic, and often uncertain. In [4] we pro-
posed our fuzzy aggregation as a community-based opera-
tional definition of trust. Other approaches [14] tried to deal
with multiple types of trust based on a set of different inter-
action pragmatics; others [15] dynamically assign to each

peer a trust rating, that is, a reputation based on the peer’s
previous performance on the network and store it at a suit-
able place. Robust trust reputation, based on a probabilistic
model, have been also used to the problem of user agents
selecting processor agents to processor tasks [11].
Any community-based technique for computing trust values
must take into account the fact that fully anonymous envi-
ronments are fundamentally different from centralized ones,
inasmuch some basic assumptions (e.g., opinions’ trustwor-
thiness) cannot be made without adopting strong counter-
measures against forgery. On the other hand, these coun-
termeasures should not aggravate the computational cost of
the voting scheme. In this paper, after briefly recalling our
P2P reputation system,1 we discuss its efficiency via a set
of extensive simulations and we also compare it with the
recent probabilistic approaches to trust computation called
EigenTrust [9]. The paper is organized as follows. In Sec-
tion 2 we describe our representation of trust [2, 4] and de-
scribe our protocol for community-wide trust computation.
In Section 3 we present a set of simulations aimed at as-
sessing the efficiency of our solution and comparing it with
EigenTrust. Finally, in Section 4 we draw the conclusion.

2 Trust and Reputation Protocol

P2PRep is a reputation-based protocol, formalizing the
way each peer stores and shares with the community the
reputation of other peers [5]. P2PRep runs in a fully
anonymous P2P environment, where peers are identified
using self-assigned opaque identifiers (e.g. a digest of a
public key for which only the peer itself knows the cor-
responding private key). For the sake of simplicity, here
reputation and trust are represented as fuzzy values in the
interval [0, 1]. Our approach can however be readily ex-
tended to more complex array-based representations taking

1Note that while in this paper we assume reputations to be associated
with peers, the approach can also be applied to the exchange of opinions
on resources [6] and on many other aspects (e.g., quality of resources,
opinions on specified parameters, and so on).

into account multiple features [2]. Protocol P2PRep con-
sists of four phases. In Phase 1, a requestor r locates avail-
able resources sending a Query broadcast message. Other
peers answer with a QueryHit message notifying r that
they may provide the requested resource. Upon receiving
a set of QueryHit messages, r selects an offerer o and
polls the community for any available reputation informa-
tion on o sending a Poll message. Poll messages are
broadcasted in the same way as Querymessages. All peers
maintain an experience repository of their previous experi-
ences with other peers. When a peer receives a Poll mes-
sage, it checks its local repository. If it has some informa-
tion to offer and wants to express an opinion on the selected
offerer o, it generates a vote based on its experiences, and
returns a PollReply message to the initiator r. As a re-
sult of Phase 2, r receives a set V of votes, some of which
express a good opinion while others express a bad one. In
Phase 3, r evaluates the votes to collapse any set of votes
that may belong to a clique and explicitly selects a ran-
dom set of votes for verifying their trustworthiness [5]. In
Phase 4 the set of reputations collected in Phase 3 is synthe-
sized into an aggregated community-wide reputation value.
Based on this reputation value, the requestor r can take a
decision on whether accessing the resource offered by o or
not (Phase 5). After accessing the resource, r can update
its local trust on o (depending on whether the downloaded
resource was satisfactory or not). While a naive implemen-
tation of P2PRep can be expensive in terms of storage ca-
pacity and bandwidth, this cost can be minimized by ap-
plying simple heuristics. The amount of storage capacity is
proportional to the number of peers with which the initiat-
ing has interacted. With respect to the bandwidth, it is easy
to see that P2PRep increases the traffic of the P2P network
by requiring both direct exchanges and broadcast requests.
It is however reasonable to assume that the major impact
of the protocol on network performance is due to broad-
cast messages and their answers. To overcome this issue,
several heuristics can be applied. For instance, intelligent
routing techniques can be applied for enabling custom for-
warding of poll packets to the “right” peers. Vote caching is
another technique that can be applied to improve the effec-
tiveness of P2PRep. Finally, P2PRep scalability depends
on the technique used for vote aggregation. Section 3 will
present a set of simulations showing the details of P2PRep
behavior.

2.1 Reputation model

In P2PRep reputations are managed at two levels: local
and community-wide reputation. Local reputation is based
on each individual peer’s direct experience of interactions
with another peer, while community-wide reputations rep-
resent the synthesis resulting by aggregating multiple opin-

ions about a peer. In the remainder of this Section, follow-
ing [4] and [2], we recall our fuzzy technique for computing
local and community-wide reputations.

Let ri,j be the local reputation resulting from direct in-
teractions between peer i and peer j. For each interaction,
we model the transaction outcome t

(n)
i,j as follows: t

(n)
i,j = 1

if the outcome was satisfactory, t
(n)
i,j = 0 otherwise. We use

a fuzzy value to express local reputations to take into con-
sideration the fact that transactions can be heterogeneous
for importance, resource value, and so on. Each local rep-
utation is initialized after the first interaction by taking the
value of t

(1)
i,j . At any time n > 1, the local reputation is

updated based on the outcome of the n-th transaction as fol-
lows.

r
(n)
i,j =

{
t
(n)
i,j if n = 1

α(n)r
(n−1)
i,j + (1− α(n))t(n)

i,j if n ≥ 2
(1)

where α(n), a value between 0 and 1, is the aggregation
freshness,2 that is, the importance of past transactions in re-
lation with the last one. If α(n) ' 1 past experience will
have a very high importance and the last transaction has a
little role in reputation evaluation; if α(n) ' 0 then last ex-
perience is merely forgotten. Note that our freshness value
is not static, but can change at any single interaction, ac-
cording to circumstances. In particular, for the first encoun-
ters of i with j, (i.e., for low values of n), freshness should
remain high while it can decrease as n grows and therefore
i has acquired enough experience on j. Note however that
freshness should never become too low, since this would
mean having a blind trust in other peers. In our approach,
freshness evolution relies on feedback, by checking whether
the current reputation value of a peer would give an accu-
rate prediction of the result of the next transaction with it.
If this is the case, reputation value is about right and fresh-
ness should not increase; otherwise, the current reputation is
considered unreliable and α is incremented. Our approach
follows a well-known technique for feedback control, that
quickly stabilizes to a fair and efficient setting [8]. While
other feedback strategies such as MIMD (Multiplicative In-
crease/Multiplicative Decrease) could be adopted, they are
known to be less robust and need careful tuning to avoid
oscillatory behavior [3]. More specifically, if we consider
the reputation r

(n−1)
i,j to be a prediction of the outcome of

i’s next download from j, the accuracy of this prediction
can be computed with a Boolean function which returns 0
(wrong prediction) if the value of r

(n−1)
i,j differs from the

actual outcome t
(n)
i,j more than a given error threshold E,

2Note that different values of freshness are used for different peers and
therefore a peer i will use a different α for each different peer j. For
readability, we omit the subscripts when they are clear from the context.

and returns 1 (right prediction) otherwise. Namely,

Acc(n)
i,j =

{
1 if | r(n−1)

i,j − t
(n)
i,j |< E

0 otherwise
(2)

This accuracy value is then used to determine a coefficient
β(n) taking into account past experience and the outcome of
the last transaction as follows. The coefficient is initialized
to β(0) = 0 and is updated at subsequent times as:

β(n) =
β(n−1) + Acc

(n)
i,j

2
(3)

Finally, α(n) = β(n)

2 .
If the degree of similarity Acc

(n)
i,j ' 1, then α(n) will

increase, granting more importance to past history3.
If the requestor has no previous experience on a peer j

or the local reputation is still considered not reliable enough
(i.e., for low values of n), the peer will, by using P2PRep
run a poll and inquire other peers about j’s reputation for
them. Here, we assume the vote expressed by each peer
k participating in the poll on j to be its local reputation
rk,j of j. The question now is how the poller should ag-
gregate the different votes received to produce a synthe-
sized value.4 A basic requirement for aggregating opin-
ions is that if the pool peers is stable and they maintain
identical beliefs across all transactions from a given instant
t0 onwards, then all interactions will asymptotically con-
form to these beliefs. In other words, if the majority of
peers considers that peer j has a bad reputation, then j will
be in the end excluded from all transactions.5 This prop-
erty, called unanimity, is often considered a minimal stan-
dard of acceptability for an opinion aggregation operator,
and is held both by the weighted mean and the geometric
mean [1]. The simplest aggregation available is the arith-
metic average of the votes received. However, arithmetic
average performs a rough compensation between high and
low values, not taking into account different variations be-
tween individual opinions that may characterize different
polls. Luckily, arithmetic means are not the only aggrega-
tion functions usually used in opinion pooling and many
other combination methods had been studied. The OWA
(Ordered Weighted Average) operator, introduced by Yager
in [13], allows the decision maker to give different impor-
tance to the values of a criteria. The main difference be-
tween OWA and the arithmetic means consists in the sepa-
rability of the aggregation function: OWA considers that the

3Note that, of course, this accuracy could also be defined as a fuzzy
function, for example, by considering that not all transactions have the
same importance. We shall not elaborate on this possibility in this paper,
assuming that the crisp β coefficient summarizes all context representation.

4Note that since the individual reputations are fuzzy, their fuzzy aggre-
gation will also be a value in the unit interval.

5Of course, the delay can be arbitrarily long if communications on the
network are slow.

influence of each contribution on the result is not directly
separable, but depends on the other contributions. For in-
stance, a very good reputation value in the midst of low ones
should be treated differently than a good value accompanied
in the poll by fair ones. Technically, an OWA operator is a
weighted average that acts on an ordered list of arguments
and applies a set of weights to tune their impact on the final
result. Namely, in our setting, we get

λOWA =
∑n

k=1 wkrtk,j∑n
k=1 wk

(4)

where n is the number of reputations to be aggregated
considered in decreasing order, that is, assuming rt1,j ≥
rt2,j ≥ ... ≥ rtn,j and [w1 w2 . . . wn] is a weighting vector.
The behavior of this operator is largely determined by the
choice of weights. For instance, the result could be based on
the most frequent values simply by assigning lower weights
to extreme ones. Alternatively, high weights can be given
to extreme values to increase the operator responsiveness
to them.6 In our case, we set the OWA weights asymmet-
rically, since our aggregation operator needs to be biased
toward the lower end of the interval, increasing the impact
of low local reputations on the overall result. The reason
is that we assume that peers are usually trustworthiness and
a malicious behavior is the exception. According to this
assumption, low local reputations should be considered as
relevant and their impact on the overall reputation should
be significant. Of course, there are many ways to do this,
for example, by increasing weights linearly or non-linearly
with the position k of the corresponding opinion rtk,j in the
OWA ordered set of arguments. Also, it is possible to give
a bonus to multiple occurrences of the same weight (group
votes). This can be done by defining the operator on a (usu-
ally small) set of different reputation values d rather than on
the (usually large) number of peers, as follows:

λ =
∑d

i=1 wi(vi)1/|Vi|∑d
i=1 | Vi | wi

(5)

where V1, . . . , Vd is a partitioning of the set of votes group-
ing together votes with the same value vi, and where vi are
considered ordered, that is, v1 > . . . > vd.

Since our local opinions take values in the unit interval
[0, 1], in principle there is no reason to favor group votes;
however, computational efficiency and values’ rounding to
a fixed number of decimal may make this a viable solu-
tion for practical implementations. In the algorithm shown

6With the OWA operator the decision makers can express their pref-
erences in relation of the values of the criteria, they cannot express pref-
erences between criteria. This drawback is important when criteria are
heterogeneous and is usually solved using the WOWA (Weighted OWA) op-
erator [12] instead of OWA. Here, however, we are in a homogeneous sce-
nario, so using OWA looks perfectly safe.

below, we simply partition the unit interval in d + 1 sub-
intervals and use their extreme values (discarding 0 and 1)
as a (linearly increasing) set of weights for aggregating the
d distinct reputation values to be aggregated via the OWA
operator. In other words, we set:

λ =

∑d
i=1

i
d+1vi | Vi |∑d

i=1
i

d+1 | Vi |
(6)

We include local reputation in the computation by adding
a new class Vd+1 = rp,j and associate with it the high-
est possible weight, with weights now computed for d + 1
values. The final definition of our aggregation operator for
P2PRep is the following one:

Rp,j =

∑d+1
i=1

i
d+2vi | Vi |∑d+1

i=1
i

d+2 | Vi |
(7)

3 Simulation Model

While implementations of P2PRep are available [6],
our protocol’s large-scale efficiency and effectiveness as
compared to other proposed approaches can only be as-
sessed via simulation. In this Section, after describing the
simulation model we adopted for P2PRep we describe the
simulation experiments that we carried out to investigate the
efficiency of our solution, reporting and discussing the main
results obtained.

3.1 Model description

Our simulation model refers to a P2P network where
each peer is reachable from all others7 and does not take into
account delays due to message routing. Over this broadcast
network, we simulate a set of queries, each asking for a ran-
domly chosen resource. For each query, the peer querying
the network is randomly chosen (with a uniform probabil-
ity distribution) over all available peers. Then, a preferred
offerer o is selected, randomly choosing some peers among
those having the resource required. In our simulation, a ma-
licious peer is more likely to be selected as the offerer o than
a well-behaved one. The main settings of our simulation
model are the following: the number of peers P in the net-
work is uniformly distributed in [300, 400]; the number of
malicious peers M , M ⊂ P is the 40% of |P |; the number
of different kinds of resources is 20; the max poll cardinal-
ity is uniformly distributed in [5, 15]. We also assume all
well-behaved peers i participate in a poll on offerer o by re-
turning the local reputation ri,o if such a value is recorded;
no response is returned otherwise. Moreover, we modelled

7In real P2P systems this condition is only verified within a fixed hori-
zon.

Figure 1. The performance of our solution

the behavior of malicious peers in M by assuming that: 1)
malicious peers provide only malicious resources; 2) mali-
cious peers respond to the polling on a peer o by always pro-
viding a (malicious) 1 reputation if o ∈ M , and by provid-
ing a genuine opinion, otherwise. Our simulation consists
of a number of repeated experiments, each one evaluating
a different and randomly generated scenario. We have set
the total number of experiments to 50 while the number of
queries for each experiment ranges from 1, 000 to 10, 000
with an increment of 1, 000. Higher values are not infre-
quent on real P2P systems like Gnutella [6]; however we
chose this range to enforce the assumption that the set of
peers remains more or less stable across the experiments.
To perform a simple comparison, the model provides also a
random policy in which the offerer is randomly chosen and
reputation checks are not performed.

Number of queries OWA Arithmetic mean
5000 18.55 25.02
7500 14.01 20.88

10000 12.98 19.15
12500 12.25 18.76
15000 10.00 16.54
17500 9.30 15.81
20000 8.47 15.05
22500 8.27 14.63
25000 7.86 14.21

Table 1. OWA vs. arithmetic mean: Percentage
of malicious downloads

The performance of P2PRep with fuzzy aggregation is
shown in Figure 1: the fuzzy solution has a slow start but the
percentage of malicious downloads decreases as the qual-
ity of the network reputation increases following the dif-

fusion of information about malicious peers. Although it
steadily decrease, we note that after a number of queries
(about 15000 in our experiments) the percentage of mali-
cious downloads tends to become more stable.

Table 1 reports a comparison between OWA and arith-
metic means showing the beneficial impact of using a fuzzy
“intelligent” aggregation operator with respect to a flat one
like arithmetic mean.

3.2 Comparisons with EigenTrust and Random
Policy

We now compare the behavior of P2PRep with fuzzy
aggregation with respect to EigenTrust [9], a probabilistic
approach to trust computation. In our experiments we have
set the number of pre-trusted peers equal to 5% of |P |. The
results are reported in the Figure 2.

Figure 2. Comparison with Eigentrust

Our analysis shows that EigenTrust ensures good perfor-
mance even for a small number of transactions. However,
the very same results show that a single variation has a small
impact and EigenTrust cannot improve much over time. Al-
though it has a slower start, our fuzzy solution overtakes
EigenTrust after 6000 queries.

3.3 Changing P2P population

We are now ready to investigate the effects on P2PRep
of an high mortality rate, which is a typical feature of P2P
environments. Namely, we consider three different scenar-
ios. In scenario S1 we increase the number of malicious
peers by changing rogue peers into well-behaved ones. Vice
versa, in S2 the number of rogue peers is decreased by
changing them into well-behaved peers. Finally, the third
scenario S3 is a mix of S1 and S2, that is, rogue peers
change into well-behaved ones and vice versa. Referring

number of no changes S1 S2 S3

queries rand P2PRep rand P2PRep rand P2PRep rand P2PRep
10000 37.78 12.98 47.05 21.72 33.14 11.87 38.18 13.32
12500 38.60 12.25 49.95 25.08 31.61 9.68 37.73 10.56
15000 37.52 10.00 51.88 24.65 29.98 8.75 37.78 9.50
17500 37.87 9.30 53.93 24.30 28.33 6.99 38.40 9.17
20000 38.15 8.47 55.84 26.80 26.53 6.13 38.02 8.72
22500 37.85 8.27 57.70 26.21 25.57 5.77 38.27 8.81
25000 38.27 7.86 59.65 28.85 24.99 5.17 37.63 8.16

Table 2. Scenarios evaluation: Percentage of
malicious downloads

to our simulation model, we introduce two new further pa-
rameters: a population change is carried out every qchange

queries and a peer changes its status with pchange of prob-
ability. Table 2 reports the results of our experiments set-
ting qchange = 2500 and pchange = 10%. Column “no
changes” refers to the scenario in which the status of peers
do not change. The first two scenarios models the case in
which peer’ population drastically changes. In S1, the num-
ber of malicious downloads using P2PRep are about one
half of those with random policy. On the contrary, in S2

they decreases up to five times. Scenario S3 models high
turnover in peer’ population: P2PRep confirms its robust-
ness showing a percentage of malicious downloads greater
about 1% than scenario with no changes. Finally, we ob-
serve that comparison with EigenTrust is not possible since
it requires stable peer’ population in order to guarantee the
convergence of the probabilistic model.

4 Conclusions

Voting systems are at the base of the design of reputation
systems in fully anonymous P2P environments. To be ef-
ficient as well as effective, vote collection and aggregation
must rely on advanced flexible techniques for collecting and
aggregating peers’ opinions. In this paper, we discussed
the efficiency of our voting protocol P2PRep when used in
association with a OWA fuzzy aggregation operator, com-
paring it with EigenTrust a probabilistic approach. Further
research will be aimet at improving the simulation system
including a more complex network model to better evaluate
the impact of communication overhead.

Acknowledgments

This work was supported in part by the European Union
within the PRIME Project in the FP6/IST Programme un-
der contract IST-2002-507591 and by the Italian Ministry
of Research Funds for Basic Research (FIRB) within the
KIWI and MAPS projects.

References

[1] J. Aczél and C. Alsina. On synthesis of judgements. Socio-
Econom Planning Science, 20(6):333–339, 1986.

[2] R. Aringhieri, E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. Fuzzy techniques for trust
and reputation management in anonymous peer-to-peer sys-
tems. Journal of the American Society of Information and
Software Technology, 2005. To appear.

[3] D. Chiu and R. Jain. Analysis of the increase and decrease
algorithms for congestion avoidance. Journal of Computer
Networks, 17(1):1–14, 1989.

[4] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,
M. Pesenti, P. Samarati, and S. Zara. Fuzzy logic techniques
for reputation management in anonymous peer-to-peer sys-
tems. In Proc. of the Third International Conference in
Fuzzy Logic and Technology, Zittau, Germany, 2003. Zit-
tau, Germany.

[5] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. Managing and sharing servents’ reputations in
P2P systems. IEEE Transactions on Data and Knowledge
Engineering, 15(4):840–854, 2003.

[6] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi,
P. Samarati, and F. Violante. A reputation-based approach
for choosing reliable resources in peer-to-peer networks. In
Proc. of the 9th ACM Conference on Computer and Commu-
nications Security, Washington, DC, USA, 2002. Washing-
ton, DC, USA.

[7] E. Damiani, R. Khosla, and W. Grosky. Human-centered
E-business. Kluwer Academic Publisher, 2003.

[8] V. Jacobson. Congestion avoidance and control. ACM SIG-
COMM Computer Communication Review, 18(4):314–329,
1988.

[9] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The eigen-
trust algorithm for reputation management in P2P networks.
In Proc. of the Twelfth International World Wide Web Con-
ference, Budapest, Hungary, 2003. Budapest, Hungary.

[10] G. Klir and T. Folger. Fuzzy Sets, Uncertainty, and Informa-
tion. Prentice-Hall, 1988.

[11] S.Sen and N. Sajja. Robustness of reputation-based trust:
Boolean case. In Proc. of AAMAS, pages 288–293, Bologna,
Italy, 2002. Bologna, Italy.

[12] V. Torra. The weighted owa operator. International Journal
of Intelligent Systems, 12(2):153–166, 1997.

[13] R. Yager. On ordered weighted averaging aggregation oper-
ators in multi-criteria decision making. IEEE Transactions
on Systems, Man and Cybernetics, 18(1):183–190, 1988.

[14] R. Yahalom, B. Klein, and T. Beth. Trust relationships in
secure systems. In Proc. of the IEEE Symposium on Re-
search in Security and Privacy, Oakland, CA, USA, 1993.
Oakland, CA, USA.

[15] B. Yu and M. Singh. A social mechanism for reputation
management in electronic communities. In Proc. of the 4th
International Workshop on Cooperative Information Agents,
Boston, USA, 2000. Boston, USA.

