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∗Università degli Studi di Milano, 26013 Crema - Italy Email: firstname.lastname@unimi.it
†George Mason University, Fairfax, VA 22030-4444 - USA Email: jajodia@gmu.edu
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Abstract—We propose an approach for allowing users to assess
the integrity of distributed queries computed by a computational
cloud, which is trusted neither for data confidentiality nor for
query integrity. In particular, we consider join queries over
multiple data sources, maintained at separate (trusted) storage
servers, where join computation is performed by an inexpensive,
but potentially untrusted, computational cloud. We illustrate the
working of our approach and its application in a MapReduce
scenario. We also provide an analysis and experimental results.
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I. INTRODUCTION

Users and companies are today more and more resorting to
cloud-based solutions for accessing information and services.
Such a success has motivated cloud providers to enrich their of-
fers allowing users to enjoy a large variety of configurations by
different service providers, offering storage and computational
capabilities with different features and at different economical
costs. An emerging trend shows a clear distinction between
storage providers, with reliability and continuity of access as
critical factors, and computational providers, which see the
price of the service as the competitive factor.

In this context, we consider a scenario where a client
wishes to perform joins over multiple relations stored at
different storage servers by using a computational cloud
(Figure 1). A specific feature that drives our work is the
consideration of the MapReduce paradigm, which supports the
processing of a vast amount of data in parallel on a large
number of nodes. The join of data originating from multiple
sources represents the operation most commonly discussed
when analyzing the behavior of MapReduce architectures.
We assume that the storage servers are trustworthy while
the computational cloud is not. There are many reasons for
which a join computation can be delegated to a computational
cloud, instead of being performed by the same servers storing
the data. First, storage servers - chosen based on reliability
and continuity of access - might not be the most econom-
ically viable solution for executing computations. They can
then perform simple operations (like selection, projection, or
encryption of data) but may result too expensive for joins,
which are computation intensive operations. This reasoning
applies also to the case where storage servers are not external
providers but data owners themselves (where each storage
server might be under control of a different authority), which
can accommodate retrieval on their data but cannot dedicate
resources to executing computations. Second, the computation
might require a many-to-many join on large relations, with the
need to represent internally a large collection of intermediate
results, going beyond the ability of a storage server. Third,

Figure 1. Reference scenario

a computation might require joins among a multiplicity of
servers (join chains), and relying on a dedicated computational
service is more appropriate than introducing high redundancy
in the communication of data. Fourth, the evaluation of joins
by storage servers might be problematic when the internal
organization of the data requires a dynamic re-organization
for the join execution.

Since the computational cloud is not trusted, there is
the need to protect confidentiality of the data and provide
guarantees on the integrity of the join results. Our approach
allows a client to protect the confidentiality of data and join
operations w.r.t. the computational cloud and to assess, in
a probabilistic way, the integrity of the result. It relies on
the use of complementary techniques, originally introduced
in [1], which are extended to the consideration of a distributed
computational cloud, as the MapReduce paradigm. A great
advantage of our solution is the support of any kind of join
(one-to-one, one-to-many, and many-to-many) as well as of
sequences of joins, which are either not supported (many-
to-many joins or sequences) or require additional overhead
(one-to-many joins) in earlier approaches. The remainder of
the paper is organized as follows. Section II introduces the
MapReduce paradigm and the basic techniques that we extend
and apply in our work. Section III illustrates the working of
our approach with reference to joins involving two relations,
describing query execution and the application of integrity
techniques to ensure control of all components in the MapRe-
duce framework. Section IV extends the treatment to arbitrary
sequences of join operations involving multiple storage servers.
Section V analyzes the working of our approach and the
integrity guarantees offered. Section VI presents experimental
results. Section VII discusses related work.
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II. BASIC CONCEPTS

A MapReduce framework supports execution of tasks by
multiple nodes in a cloud architecture. Among the nodes, one
works as manager, distributing tasks and collecting results
from other nodes operating as workers. Briefly, MapReduce
works as follows. A user-defined map function translates the
input data into a set of pairs of the form ⟨key, value⟩. The
manager then distributes these pairs to a set W={w1, . . . , wl}
of workers according to an assignment function f : K → W ,
with K the domain of the key element, so that all pairs with
the same key are assigned to the same worker. Each worker
performs a user-defined reduce function on the input pairs and
sends the result of its computation to the manager. Finally,
the manager combines the results received from all workers to
produce the final result. In our scenario, MapReduce is used
to perform joins among relations at different storage servers.

Our approach for ensuring confidentiality and assessing
the integrity of joins is based on the combined adoption of
three different techniques [1] that we adapt and extend to our
scenario. Encryption on the fly: storage servers encrypt data
before sending them to the computational cloud, which then
processes them in encrypted form. Markers: storage servers in-
sert fake tuples (not recognizable as such by the computational
cloud) in their relations. Twins: storage servers duplicate (twin)
some of the tuples in their relations before sending them to
the computational cloud (with twins not recognizable as such).
These basic techniques provide us building blocks for ensuring
protection of the information and for enabling our integrity
checks. Encryption ensures confidentiality to the information
being processed by the computational cloud, also making
markers and twins not recognizable as such. It also provides
basic integrity guarantees for the individual tuples (in particular
to the join attributes, which, as we will see in the next section,
are the only attributes processed by the computational cloud in
our solution). Markers and twins provide integrity guarantees
on the query results by enabling checking its completeness.

III. QUERY EXECUTION AND INTEGRITY VERIFICATION

We first present our approach with reference to join queries
involving only two relations (i.e., two storage servers). For
simplicity, but without loss of generality, we assume storage
servers to be fully trusted and to have visibility of the data they
store in plaintext. Our approach can however be applied also
when the storage servers are considered honest-but-curious and
should not have visibility on the data, by storing the relations
in encrypted form together with indexes used for query execu-
tion [2]. In Section IV, we will extend the treatment to queries
involving joins over multiple relations at an arbitrary number
of storage servers. For ease of presentation, we illustrate the
working of our approach incrementally, by first providing an
abstract description of the query execution, referring to the
MapReduce framework as a computational cloud. We then
discuss how the specific working of MapReduce is controlled.

A. Query execution

We employ a semi-join execution strategy. In absence of
security considerations, performing a join as a semi-join means
that the storage servers communicate to the computational
cloud only the join attributes of their relations. After perform-
ing the join, the resulting tuples are then extended with the
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Figure 2. Information flow among the parties

non-join attributes to be returned in the result. The consid-
eration of a semi-join execution strategy, besides enabling a
more efficient execution (especially for joins involving large
tuples), permits to translate any join to operate as one-to-one
joins in the cloud, with notable advantages. The first is the
ability to efficiently support one-to-one, one-to-many, many-
to-many joins and join sequences. The second is that it enables
protecting the join profile (i.e., how many occurrences of each
value appear in the base relations and how many of their tuples
participate in each match) without introducing any overhead.

Query execution works as follows. Let us consider a query
q of the form “SELECT A FROM Bl JOIN Br ON Bl.I =
Br.I WHERE Cl AND Cr AND Clr ,” where Bl and Br are
the relations stored at server Sl and Sr, respectively; A is a
subset of the attributes in Bl∪Br; I is the set of join attributes;
and Cl, Cr, and Clr are Boolean formulas of conditions over
attributes in Bl, Br, and Bl∪Br, respectively. Applying usual
push-selections-down optimization, we assume conditions Cl

and Cr to be pushed down for evaluation at the respective
storage server. Each storage server then receives in encrypted
form its sub-query together with information regulating inser-
tion of markers and twins (see Section III-B). As the execution
of these sub-queries does not introduce any challenge, we will
simply assume them to be taken care of and refer to L and R
as the relations at the storage servers S l and Sr, respectively,
after the evaluation of selection conditions Cl and Cr , and
focus on the derivation at the client of the join J on which Clr

can be executed and A projected. The data flow and execution
of the operations work as follows (Figure 2). Storage server
S l (Sr, resp.) computes on relation L (R, resp.) the projection
LI (RI, resp.) of the set I of join attributes. It then adds twins
and markers obtaining relation LI∗ (RI∗, resp.), which is
then encrypted, tuple by tuple, producing relation LI∗k (RI∗k,
resp.) with a schema including only attribute Ik, with values
corresponding to the encrypted chunks, which are sent to the
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Figure 3. An example of join evaluation

computational cloud. The computational cloud produces the
join between LI∗k and RI∗k and returns the resulting relation
JI∗k to the client. The client decrypts it, obtaining relation
JI∗, and checks integrity (i.e., tuples decrypt correctly and
all expected markers and twins are present). If no violation is
detected, the client removes twins and markers and asks the
storage servers to send the remaining attributes of the tuples
whose join attribute values are in JI . The client then merges
the relations LJ and RJ received from the storage servers,
obtaining join J on which it can evaluate condition Clr and
project the needed attributes. Note that, while the semi-join
strategy requires several data exchanges among the involved
parties, it limits the transfer of non-join attributes and the
overall amount of data transferred. Furthermore, the operations
performed by the client and the storage servers require limited
cost. Figure 3 illustrates an example of application of our
techniques where: the join attribute is Ilr, there is one marker
(m), and twins are created for tuples with a value for the join
attribute equal to a or c. We use the bar notation to denote
twins (e.g., the twin of a tuple t is denoted by t, and the twin
of join attribute value a is denoted by a). In the following,
we use the term twin to refer to either the tuples (original
and derived) involved in a relation. We use Greek letters to
denote encrypted values and encrypted tuples. Note how twins,
markers, and the join profile are protected from the eyes of the
computational cloud, which simply observes a set of possibly
matching encrypted chunks where mapping is always one-to-
one, even if one-to-many in reality (e.g., for value b in Figure 3
there are two occurrences in the original relation at Sr).

B. Integrity checks and work distribution

We now describe the coordination, insertion, and verifica-
tion of integrity controls enabling the client, with the cooper-
ation of the storage servers, to assess the integrity of the join
result and detect possible misbehavior of the computational
cloud and of a specific worker in particular.

In addition to encryption (which, as already noted, provides
basic confidentiality, integrity of individual tuples and makes
our integrity controls non-recognizable) our solution relies on
the use of fake check tuples (markers), and data replication
(twins). Encryption, as well as insertion of twins and markers,
is done autonomously by each storage server whose operations
must however be ensured to be coordinated with the others, to
guarantee that the integrity checks work properly. In particular,
encryption is performed by each storage server independently,
by using the same symmetric key provided by the client
together with the query (the key changes for every query that,
like the control information, is protected in communication
since the client encrypts them with a key shared with the
storage server). The client communicates to each storage
server also: i) the number N of markers and ii) a twinning
condition Ctwin regulating tuple duplication to use for the
query. Condition Ctwin is defined on the result of a keyed
hash function operating on the join attribute, which produces
a uniform distribution of values and permits to regulate the
percentage of twins in the relations.

A complicating factor in our MapReduce scenario is that
computation is distributed among different workers. This in-
troduces the problem of distributing the controls (twins and
markers) over the different workers so to ensure a complete
overseeing of the system as well as enabling accountability
for misbehaviors and failures (see Section V). In presence
of many servers (workers, in our MapReduce scenario), if no
condition is enforced on the distribution of twins and markers
to workers, a worker might end up receiving none of them,
making a complete failure of the worker not detectable. In a
MapReduce scenario, work is distributed by the manager to
the workers based on a (deterministic) assignment function
that maps each pair ⟨key,value⟩ to a worker. For our query
computations, pair ⟨key,value⟩ is of the form ⟨τ [Ik], LI∗k⟩
(⟨τ [Ik], RI∗k⟩, resp.), meaning that the key is the encrypted
join attribute and the value is the name of the relation where it
comes from. The assignment can be any function (e.g., a hash
function with output in the range 1, . . . , |W |) performed by
the manager for allocating pairs to workers. The assignment
function trivially guarantees that tuples with the same values
for the join attribute (i.e., matching in the join) are assigned to
the same worker and therefore that no tuple can be missed from
the join due to an improper allocation. While the assignment
is performed by the manager (which is part of the non-trusted
computational cloud) the assignment function is known to the
client and the storage servers.

Markers. Let N be the number of markers that the client
decides to use for verifying the completeness of a join result,
and l be the number of workers. As markers are randomly
generated, there is no guarantee that they will be evenly
distributed among the different workers. We can imagine
different strategies that could be applied for the distribution
of markers among the workers:



• Random: no condition is required on the distribution of
markers to workers, which is then completely random.

• At-least-n: no worker can go completely uncontrolled;
every worker should receive at least n markers (with
n ≤ ⌊N/l⌋).

• Perfect balance: markers should be distributed evenly
among workers. Each worker should receive a number
of markers from ⌊N/l⌋ to ⌈N/l⌉.

A random distribution strategy provides guarantees on the
behavior of the system overall but can leave some workers
completely uncontrolled as noted above. The other two strate-
gies ensure instead that a certain amount of control is enforced
at every worker. We can capture all these three strategies with
the following definition.

Definition 3.1 (Marker distribution strategy): A marker
distribution strategy is a triple ⟨N,Nmin, Nmax⟩ where N is
the total number of markers to be assigned, and Nmin and
Nmax are the minimum and maximum, respectively, number
of markers to be assigned to every worker.

Definition 3.1 specifies that a distribution strategy dictates
the total number of markers that should be applied imposing,
in addition, constraints on the number of markers that each
worker should receive. Trivially, Definition 3.1 covers the three
strategies above specifying, respectively: ⟨N, 0, N⟩, ⟨N,n, n+
(N−n∗l)⟩, ⟨N, ⌊N/l⌋, ⌈N/l⌉⟩. Note that both the total number
of markers and the number of markers at each worker should
satisfy the strategy. Hence, although in principle with an at-
least-n strategy, a worker can receive all the spare (N −n ∗ l)
markers, its bound will be dynamically adjusted depending on
whether other workers have already received some markers.

Property 3.1 (Correct markers distribution): A set
M of markers is correct w.r.t. a distribution strategy
⟨N,Nmin, Nmax⟩ if: i) ∀wi ∈ W : Nmin ≤ nwi

≤ Nmax,
with nwi

the number of markers assigned to worker wi, and

ii)
∑l

i=1 nwi
= N .

Each storage server generates markers via a function µ
(e.g., a pseudorandom function or a progressive counter) com-
municated by the client together with the query. Applying such
a function, each storage server will produce the same sequence
of markers. When the computational cloud is composed of
a worker only, simply taking the first N markers generated
suffices. The complication in our scenario is that the first
N markers generated might not guarantee the distribution
requested by the client. Fortunately, the implementation of a
correct marker distribution strategy is pretty straightforward
and can be enforced independently by every storage server.
Figure 4 illustrates function Generate Markers executed by
each storage server for generating markers. Basically, each
storage server generates markers in sequence and checks every
marker generated to see to which worker it would be assigned.
If the worker to which the marker would be assigned has
not reached the minimum number Nmin of markers, or has
passed it but has not reached Nmax and there are spare markers
still to be allocated, the marker is retained. Else, the marker
is discarded and a new marker is generated. The function
terminates when N markers have been assigned to workers.
Since each storage server uses the same function, they produce
the same set of markers, allocating them to the same workers

Function Generate Markers(⟨N,Nmin, Nmax⟩)
1: M := ∅ /* set of generated markers */
2: spare := N − (Nmin ∗ l) /* spare markers */
3: for i:=1 to l do num markers[wi] := 0 /* n. of markers assigned to wi */
4: repeat
5: generate new marker m via function µ
6: w := f(Ek(m)) /* f is the assignment function */
7: if (num markers[w] < Nmin) ∨
8: (num markers[w] < Nmax ∧ spare > 0)
9: then

10: num markers[w] := num markers[w] + 1
11: if num markers[w] > Nmin then spare := spare − 1
12: M := M ∪ {m}
13: until |M|= N
14: return M

Function Generate Twins(B, Ctwin)
1: Let T be the set of tuples in B satisfying Ctwin

2: T := ∅ /* set of generated twins*/
3: for each t ∈ T do
4: w := f(Ek(t[I]))
5: repeat
6: generate salt s via function σ
7: t := t
8: t[salt ] := s
9: w̄ := f(Ek(t[I]⊕ t[salt ]))

10: until w̄ ̸= w
11: T := T ∪ {t}
12: return T

Figure 4. Functions generating markers and twins

as formally stated in the following theorem. (The proofs of
theorems are omitted for space constraints).

Theorem 3.1: Let Ml and Mr be the sets of markers for
relations L and R computed by storage servers S l and Sr,
respectively, with function Generate Markers (Figure 4). The
following conditions hold: i) Ml and Mr satisfy Property 3.1;
ii) Ml=Mr; and iii) ∀ml,mr s.t. ml ∈ Ml, mr ∈ Mr, ml=mr

⇒ f(Ek(ml))=f(Ek(mr)), with Ek a symmetric encryption
function with key k.

Twins. Twins are duplicate copies of actual tuples made dis-
tinct by the addition of a salt (which is null for original tuples).
Twinning is controlled by the client, which defines a twinning
condition Ctwin communicated to the storage servers together
with the query (all tuples whose join attribute values satisfy
the twinning condition are duplicated). Controlling distribution
of twins over different workers of the computational cloud is
more complex than for markers. In fact, while markers are
simply generated by a deterministic function (and all storage
servers can operate independently while guaranteeing the same
behavior), the generation of twins depends on the specific join
attribute values of the tuples stored at each storage server.
For instance, with reference to the example in Figure 3, S l

generates two twins (as its relation stores values a and c
matching the twinning condition, while only value a is present
in the relation at Sr). Each storage server can then observe
a different number of twins assigned to different workers.
Requiring a possible adjustment in distribution is then not
possible without requiring (impractical, if at all doable) explicit
coordination among the storage servers. In fact, a storage
server cannot simply discard the twin of a tuple satisfying the
twinning condition (like it is done for markers) and generate
another one with a different salt without informing of this
all the other storage servers, as matching twins would be



assigned to different workers by different storage servers, and
would then not belong to the join result. For instance, with
reference to our example, suppose a=a⊕s1 would be mapped
to a worker wi and that S l considers wi already complete
w.r.t. twins (as c was assigned to it). Suppose then that Sl

recomputes a=a⊕s2 (with a different salt s2) to map it to
a different worker wj . Server Sr, having twinned only one
tuple, would not observe the same problem and would proceed
with the first a computed, which maps to worker wi. As a
result, the two twins of a would be assigned to two different
workers, and therefore would not belong to the join result.
This observation clarifies that, although an adjustment in the
production of markers/twins can be enforced to provide their
distribution at different workers, such adjustment can depend
only on properties on which all storage servers have the same
observations. As this is not possible for twins, for them we
impose a basic property requiring that a twin be not assigned
to the same worker that has the original tuple from which the
twin originated, formally expressed as follows.

Property 3.2 (Twin separation): Let T be the set of tuples
of relation B at storage server S satisfying twinning condition
Ctwin, T be the corresponding twins, and f : K → W be
the assignment function. The set T∪T is said to satisfy twin
separation if ∀t, t, with t ∈ T , t ∈ T, and t[I]=t[I] :
f (Ek(t[I])) ̸= f (Ek(t[I]⊕t[salt])).

The property nicely enforces in a simple way a sort of
two-man-rule since a worker missing a twin tuple t (t, resp.)
would be exposed by the presence of the other twin t (t, resp.)
in the computation of a different worker. Also, collusion is not
possible since workers neither know which tuples are twin nor
can determine which other worker has the corresponding twin.
Also, we can expect twins of different tuples at a given worker
to be distributed to several other workers, then effectively
providing a network of distributed control over every single
worker (greatly increasing, in practice, the effectiveness of
twinning, as splitting a twin pair over two different workers
essentially makes each twin work as a marker for the worker
to which it was assigned).

Satisfaction of Property 3.2 is rather simple and can be
enforced independently at each storage server, to which the
client simply communicates the twinning condition Ctwin and
the pseudorandom function to be used for generating the salts
for twinning. Figure 4 illustrates function Generate Twins
generating twins. Basically, each storage server determines its
join attribute values to be twinned. For each value t[I] to be
twinned assigned to worker w, the storage server computes
a salt and checks the worker w to which the resulting twin
(the combination of the original value with the salt) would be
assigned and if w=w, it recomputes the twin with a new salt,
until w ̸=w. The following theorem states that the set of twins
generated by function Generate Twins satisfies Property 3.2
and that twin pairs are correctly allocated to workers.

Theorem 3.2: Let T l and T r be the sets of twins for
relations L and R computed by storage servers Sl and Sr,
respectively, with function Generate Twins (Figure 4). The
following conditions hold: i) Tl and Tr satisfy Property 3.2;
and ii) ∀tl, tr s.t. tl∈L, tr∈R, and tl[I] = tr[I] satisfies
twinning condition Ctwin ⇒ ∃tl ∈ Tl and ∃tr ∈ Tr s.t.
f(Ek(tl[I]⊕ tl[salt ])) = f(Ek(tr[I]⊕ tr[salt ])).

Function Check Integrity(JI∗, ⟨N,Nmin, Nmax⟩, Ctwin)
1: M := Generate Markers(⟨N,Nmin, Nmax⟩)
2: T := ∅ /* twins found solo */
3: for each t∈JI∗ do
4: if t is a marker then
5: M := M \ {t}; JI∗ := JI∗ \ {t} /* remove marker from JI∗*/
6: elseif t satisfies Ctwin then
7: if ∃t ∈ T s.t. t′[I] = t[I] then
8: T := T \ {t}; JI∗ := JI∗ \ {t} /* remove twin from JI∗ */
9: else T := T ∪ {t}

10: if M ̸= ∅ ∨ T ̸= ∅ then return NULL else return JI∗

Figure 5. Function checking integrity

The combined use of twins and markers provides strong
protection guarantees and allows a client to easily verify
the integrity of a join result. Figure 5 illustrates function
Check Integrity used by the client to verify integrity and
remove twins and markers from the result JI∗ returned by
the computational cloud. The function first generates the set
M of expected markers and sets variable T to the empty set.
It then considers each tuple t in JI∗. If t is a marker, it is
removed it from both M and JI∗. If t is a twin, then if the
corresponding twin t is in T , it removes it, also removing t
from JI∗; else it adds t to T . At the end, if M or T is not
empty, an integrity violation is detected.

IV. JOIN SEQUENCES

The approach and integrity checks presented for joins
involving two relations/servers can be extended to queries
involving an arbitrary number of relations/servers, that is, an
arbitrary number of join operations. The extension requires
some investigation and adjustment to ensure that joins remain
one-to-one, so to maintain the join profile completely hidden
from the computational cloud, and that the amount of integrity
checks, in terms of number of markers and twins expected in
the result, does not get lost due to the applications of the join
sequence (to which only a limited number of tuples survive).

Before illustrating the approach for join sequences, we
note that the case when, for every relation, the attributes
participating in the joins are always the same does not require
special treatment as it is a trivial extension of the case with
two relations illustrated in Figure 2. 1) Every storage server
evaluates the local condition, projects the resulting relation
over the join attributes, and - after adding markers, twins, and
encrypting - sends the resulting relation (composed only of
encrypted chunks) to the computational cloud. 2) The com-
putational cloud performs the join among all the n relations
received and sends the join result to the client. 3) The client
checks the integrity of the join result, asks the storage servers
to send the remaining needed attributes of the tuples belonging
to the join, and then merges them to produce the query result.

When relations participate in different joins with different
attributes, the situation is more complex. In fact, storage
servers cannot simply send the projection of all the join
attributes to the computational cloud as, in case of one-to-many
or many-to-many joins, this would expose the join profile to
the eyes of the computational cloud. Joins need therefore to
be executed in sequence, and the information sent by a storage
server for the execution of the i-th join should consider only
the tuples in its relation that have already been filtered by the



previous i − 1 joins. Also, the requests to the storage servers
to send the remaining attributes for the tuples belonging to
the join result should be performed in a sequence (reversed
in this case) so that only tuples actually belonging to the join
result are communicated to the client (which then needs to do
a simple merge).

Figure 6 illustrates the pseudocode describing the opera-
tions executed by the client, storage servers, and computational
cloud for a generic sequence of joins. To simplify the notation,
for readability and simplicity of the pseudocode, we assume
joins to be in a chain, while noting that the approach applies
to arbitrary joins (i.e., a relation can be involved in a join
with more than two other relations). The work of client and
storage servers is divided in two phases: phase 1 retrieves
the join attributes in the join result (via the computational
cloud to which the join computations - the most expensive
operations - are delegated); phase 2 completes the join result
with the remaining attributes (which are transmitted by the
storage servers to the client only for those tuples actually
belonging to the result as computed in phase 1). In the first
phase, the communication between the client and the storage
servers is mediated by the computational cloud, which simply
forwards packets with the requests encrypted with the key of
the receiving storage server. The requests specify the query
to be executed, the marker distribution strategy, the twin
condition, the key to be used for the query and a query
identifier qid (which is used by each storage server to operate
at every step on partial results already retrieved instead of
on the base relations). Basically, let B1, B2, . . . , Bn be the
sequence of relations involved in a join, with Iij the attribute
participating in the join between Bi and Bj , Si the storage
server storing Bi, and Ci the condition on it in the query. First,
the client requests S1 and S2 to evaluate the conditions (C1

and C2) on their respective relations obtaining Bqid
1 and Bqid

2 ,
and then to project over attributes I12 retrieving (via the join
from the computational cloud over the encrypted projection
completed with markers and twins) JI∗12. At the i-th join
between Bi and Bj , the client requests Si to provide Iij of

all the tuples Bqid
i (i.e., the tuples of Bi that have satisfied all

the conditions evaluated up to that point of the computation)
for which I(i−1)i ∈ JI∗(i−1)i (i.e., values for the join attribute
of the previous join belonging to the partial result). It requests
instead Sj to provide the projection of Iij for all tuples in
Bj that satisfy Cj . At the end of the sequence, the client will
proceed in reverse order, asking each storage server Si (from
Sn to S1) to complete the tuples belonging to the results
with all attributes Attri of Bi appearing in the query. The
reason for considering relations in reverse order is that the
join is refined at every step and then JI(n−1)n is the most
selective, certainly including only tuples that belong to the final
result. Proceeding backwards guarantees therefore to request to
each storage server only the information for the tuples actually
belonging to the result. Figure 7 (from left to right) illustrates
relations sent by storage servers and retrieved by the client
in phase 1 for the execution of query “SELECT * FROM B1

JOIN B2 ON B1.I12 = B2.I12 JOIN B3 ON B2.I23 = B3.I23
JOIN B4 ON B3.I34 = B4.I34”. For instance, for the join
between B3 and B4, S3 needs to provide attribute I34 only
for those tuples that have attribute I23 equal to 10 or 20 (i.e.,
belonging to the join of the previous step). In phase 2, the
storage servers are contacted in reverse order, every server Si

/* q : user query SELECT A FROM B1 JOIN B2 ON B1.I12=B2 .I12
. . . JOIN Bn ON Bn−1.I(n−1)n=Bn.I(n−1)n

WHERE C1 AND . . . AND Cn AND Cij

qid : identifier of the query
ki : encryption key shared between the client and Si

⟨N,Nmin, Nmax⟩ : marker distribution strategy
Ctwin : twinning condition
f : assignment function of the computational cloud
W : workers of the MapReduce computational cloud */

CLIENT

/* Phase 1: retrieve sub-joins */
1: q1 := “SELECT I12 FROM B1 WHERE C1”
2: for i = 1, . . . , n− 1 do
3: j := i+ 1
4: if i ̸= 1 then
5: h := i− 1
6: qi := “SELECT Iij FROM Bi WHERE Ih,i ∈ JIh,i”
7: qj := “SELECT Iij FROM Bj WHERE Cj”
8: pick a key k
9: toi := Encrypt(qi,⟨N,Nmin, Nmax⟩,Ctwin,k,qid) with ki

10: toj := Encrypt(qj ,⟨N,Nmin, Nmax⟩,Ctwin,k,qid) with kj
11: send “SELECT ∗ FROM toi NATURAL JOIN toj” to computational cloud

12: receive JI∗kij from computational cloud

13: JI∗ij := Decrypt(JI∗kij ) with k
14: JIij := Check Integrity(JI∗ij , ⟨N,Nmin, Nmax⟩, Ctwin)

15: if JIij = NULL then
16: return “integrity error”

/* Phase 2: build final result */
17: Res := ∅
18: for i = n, . . . , 1 do
19: if i = n then
20: send (“SELECT Attn FROM Bn WHERE I(n−1)n ∈ JI(n−1)n”,qid) to Sn

21: elseif i = 1 then
22: send (“SELECT Att1 FROM B1 WHERE I12 ∈ P2.I12”,qid) to S1
23: else
24: j := i+ 1; h := i− 1
25: send (“SELECT Atti FROM Bi WHERE Iij ∈ Pj .Iij”,qid) to Si

26: receive Pi from Si

27: Res := merge Res with Pi

28: Res := Evaluate “SELECT A FROM Res WHERE Cij”
29: return Res

COMPUTATIONAL CLOUD

1: receive “SELECT ∗ FROM toi NATURAL JOIN toj” from the client
2: send toi to Si

3: send toj to Sj

4: receive BI∗ki from Si

5: receive BI∗kj from Sj

6: for each w ∈ W
7: assign Lw := {τ∈BI∗ki : f (τ[Ik])=w} to worker w
8: assign Rw := {τ∈BI∗kj : f (τ[Ik])=w} to worker w
9: w computes Resw := Evaluate “SELECT ∗ FROM Lw NATURAL JOIN Rw”

10: JI∗k :=
⋃
{Resw : w ∈ W}

11: send JI∗k to the client

STORAGE SERVER Si

/* Phase 1: contribute information to compute sub-joins */
1: receive toi from the computational cloud
2: (qi,⟨N,Nmin, Nmax⟩,Ctwin,k,qid) := Decrypt(toi) with ki
3: where qi = “SELECT I FROM Bi WHERE Condition”

4: if Bqid
i = NULL then Bqid

i := Bi

5: Bqid
i := Evaluate “SELECT * FROM Bqid

i WHERE Condition”

6: BI := Evaluate “SELECT DISTINCT I FROM Bqid
i ”

7: M := Generate Markers(N ,Nmin,Nmax)
8: T := Generate Twins(BI , Ctwin)
9: BI∗ := BI ∪ M ∪ T

10: BI∗k := Encrypt(BI∗) with k
11: send BI∗k to computational cloud

/* Phase 2: contribute information for final result */
12: receive (q,qid) from the client

13: BJ := Evaluate q over Bqid
i

14: send BJ to the client

Figure 6. Pseudocode of the algorithms executed by the client, the compu-
tational cloud, and the storage servers for the evaluation of query q
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Figure 7. An example of phase 1 of a join sequence execution

is asked to provide its tuples, and its result Pi is considered
for producing the result. In particular, the client asks to S4 the
tuples with I34 ∈ JI34, obtaining P4; to S3 the tuples with
I23 ∈ JI23 and I34 ∈ P4.I34 (i.e., {p,x}), obtaining P3; to
S2 the tuples with I12 ∈ JI12 and I23 ∈ P3.I23 (i.e., {20}),
obtaining P2; to S1 the tuples with I12 ∈ P2.I12 (i.e., {a}).

V. ANALYSIS

We discuss the integrity guarantees offered by our approach
and the effectiveness of markers and twins for detecting
violations.

Integrity controls and accountability for violations. Integrity
of the join result implies guaranteeing integrity of individual
tuples and that the join result is complete. As for individual
tuples, tampering of data or the matching of tuples that do
not join can be trivially detected given the use of encryption,
for the first, and by the fact that the client would see the
non matching plaintext values, for the second. Twins and
markers allow assessing (with probabilistic guarantees) the
completeness of the join result. The following theorem proves
that for a join using N markers and a twinning condition
Ctwin: 1) if the join has been computed correctly, the client
will see in the result N markers and all tuples satisfying
Ctwin in pairs; 2) for any missing marker/twin, the client
can recognize the worker that was responsible for producing
it. (While identifying the worker, the failure for a missing
marker/twin could also be due to a misbehavior of the manager,
which is then always co-responsible. Also, a manager not
correctly enforcing the assignment function produces failures
distributed over all workers.)

Theorem 5.1: Let M be the set of markers used for a
query, Ctwin be the twinning condition, and JI∗ be the relation
computed by the computational cloud. 1) If the computational
cloud behaves correctly: i) M ⊆ JI∗, and ii) ∀t ∈ JI∗

satisfying Ctwin, t ∈ JI∗. 2) If ∃m ∈ M s.t. m ̸∈ JI∗ or
∃t ∈ JI∗ s.t. t satisfies Ctwin and t ̸∈ JI∗, the client can
identify the worker(s) responsible for the missing tuple(s).

Effectiveness of markers and twins. We start by considering
the basic level of protection offered by N markers and Z
twins [1]. Given a number d of dropped tuples over a total
number F (containing the original tuples, N markers and Z
twins), the probability that the markers are maintained in the
result will be1 pm = (1− d/F )N . The probability of keeping
the twins consistent, either presenting both a tuple and its twin
in the result or dropping both, is pt = ((1−d/F )2+(d/F )2)Z .
These formulas show that twins and markers have a comple-
mentary structure: markers are half as effective as twins for
low values of d/F , but twins lose their effectiveness when
considering large values of d/F . Following these formulas,
we aim at characterizing what is a good configuration (w.r.t.
integrity guarantees offered vs. cost to be paid) in terms of
number of markers and twins to adopt. We consider as cost
the number of tuples that are added to the result, be them
markers or twins. Figure 8(a) shows the probability p = pm ·pt
that omissions of the computational cloud go undetected for
configurations with 10 tuples added, varying the number N
of markers and 10 − N of twins. Clearly, the configuration
that uses only twins (N = 0) is inadequate, as it is not
able to detect complete omissions (i.e., with the computational
cloud simply producing an empty result). The configurations
with a low number of markers (N = 1 and N = 2) also
show an inversion of the detection probability, with higher
chance for the computational cloud of not being detected
when increasing the dropping rate. Preferable configurations
are those that have an always negative derivative (N ≥ 3).
We note that in Figure 8(a) an increase in the value of N
leads to configurations that have lower values of p for higher
dropping rates, when p is already quite low, and have higher
values of p for configurations with d/F < 0.5. We consider
preferable the configurations that, as far as the derivative
for p is negative for the whole range of d/F , minimize p
when d/F < 0.5. In other words, considering 10 added
tuples, the configuration with 3 markers and 7 twins is the
preferred one. We also note that while markers are guaranteed
to belong to the join result, the presence of twins depends
on the actual instance of the underlying relations (i.e., how
many original tuples satisfy Ctwin). This suggests that the
best strategy is to identify a number of markers that is able
to provide adequate guarantee for the detection of omissions
for large values of d/F , then dedicating all the remaining
resources to the introduction of twins. While, for simplicity,
we presented our reasoning for small configurations (where the
probability of a misbehavior not being detected may appear not
negligible), we note that such a probability is really negligible
for configurations expected in real life scenarios. For instance,
applying our formula, we can observe that using 50 markers
and twinning 5% of the tuples, a computational cloud that
omits 50 tuples will be detected with probability greater than

1For small configurations a less readable but more precise formula is pm =
F ! · (F +N − d)!/((F − d)! · (F +N)!), because each tuple removed from
the set has an impact on the probability.
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99% for any cardinality of the input relations (e.g., 50 out of
104 tuples or 50 out of 109 tuples), with a low cost.

Marker distribution strategy. We want to assess the effec-
tiveness of the different marker distribution strategies in terms
of integrity guarantees. We then examine the impact of the
distribution of markers on the ability of the client to detect
violations (i.e., of markers being missing) when one worker
fails. We assume to have |W | workers and the join with F
tuples plus N markers. If the distribution of tuples and markers
derives from the application of a pseudorandom function, we
can expect them to be distributed to the workers following a
binomial distribution: the probability pj of having j of the x
(with x either F or N ) tuples assigned to worker w will be
pj =

(

x
j

)

· (1/|W |)j · ((|W |− 1)/|W |)x−j . For instance, if we
have 51 tuples and 3 workers, the probability that worker wi

has 17 tuples will be p17i =
(51
17

)

· (1/3)17 · (2/3)34 = 0.118.
The probability to avoid detection for a worker that has
received nw markers and dropped d tuples would then be
pn = (1− d/F )nw ; with pn assuming larger values for lower
values of nw (with greatest risk represented by workers that
receive zero or one marker). Imposing a lower bound on the
number of markers that each worker should receive (with an
at-least-n or a uniform distribution strategy) avoids such risky
configurations. Figure 8(b) compares, for a configuration with
|W | = 3 workers, F = 51 tuples and N = 6 markers,
the probability of a worker that has received nw markers
to go undetected varying the number d of dropped tuples,
when using a random distribution strategy and a uniform
distribution strategy. We note that imposing a lower bound on
the number of markers to be assigned to every worker has little
impact on the evaluation cost of function Generate Markers in
Figure 4 (which needs to generate and check markers until the
strategy is satisfied), even for the (stricter) uniform distribution.
Figure 8(c) shows the probability for a worker (upper curve)
or all workers (lower curve) to receive at least two markers
after x markers are generated in our example. The curve
confirms that the generation of markers quickly identifies a
uniform distribution (this behavior is maintained also for larger
configurations).

VI. EXPERIMENTAL RESULTS

To verify the working and applicability of our approach
we developed a prototype in Java that implements the storage
servers, the computational cloud, and the client, operating
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approach (a), and execution time with a varying join selectivity (b)

according to the pseudocode in Figure 6. We developed
the approach for two MapReduce frameworks, Hadoop (the
most popular – http://hadoop.apache.org) and Apache Storm
(supporting real-time processing of streams in a parallel and
distributed environment – http://storm.incubator.apache.org),
and used the latter for additional experiments noting a better
performance (the worse performance of Hadoop was due to
the fact that it orders the ⟨key,value⟩ pairs it receives before
sending them to workers). We tested the system using a
machine with 2 Intel Xeon E5-2630 and 64GB RAM. Figure 9
illustrates some data extracted from the evaluation of a join
between two relations: one of size 100 MB and the other one of
size varying between 100 MB and 1 GB. Each tuple of the two
relations sent by the storage servers was represented by a 16-
byte block encrypted with AES-128. The tested configurations
considered: N = 100 markers, a condition Ctwin twinning
5% of the tuples in each relation, a 10% selectivity of the
join (i.e., 10% of the tuples in the relations appear in the join
result), and 20 workers. Figure 9(a) illustrates the execution
time, varying the size of the second relation, in case of a
pipeline approach, with workers processing inputs as they
arrive (exploiting a local hash table where input not yet joined
is maintained) and sends outputs to the manager as they are
produced, and in case of a store-and-forward approach, with
workers performing the join and sending results only when
the input flow from the storage servers has terminated. As
expected, the pipeline approach exhibits better performance,
completing the join between a relation of 1 GB and one of
100 MB (the largest configuration) in less than 100 seconds.
Figure 9(b) shows the effect of the selectivity of the join
on the execution time. Keeping all the other parameters as
above, considering the pipeline approach, we then varied the



join selectivity between 10% and 100%. Contrary to what one
could have expected, a larger selectivity (meaning a larger
number of tuples in the join result) leads to a decrease of
the execution time. The reason for this behavior is that, for
less selective joins, workers will often find matching tuples.
Tuples for which a match is found are removed from the
local hash table. Such tables then remain relatively slim hence
providing more efficiency. The reduction in the execution time
that we observe with the increase of the join selectivity is a
clear indication of the critical role of the join operation.

VII. RELATED WORK

Previous related work falls in the area of security and
privacy in emerging outsourcing and cloud scenarios (e.g.,
[2]–[6]). Research on data integrity focused on solutions for
providing query results with guarantees of: i) correctness,
traditionally provided through digital signature techniques
(e.g., [7]); ii) completeness, which can be provided through
authenticated data structures (e.g., [8]–[10]) or through prob-
abilistic approaches (e.g., [1], [11], [12]); and iii) freshness,
traditionally provided by making the integrity verification
structure time-dependent (e.g., [9]). Our proposal has some
affinity with the approaches in [1], [11]–[13]. In fact, the
solution in [11] replicates the tuples that satisfy a certain
condition, which then must appear twice in the query result.
The approach in [12] instead includes fake tuples, according
to a deterministic generation function, into the outsourced
dataset and that should then selectively belong to the query
result. These proposals, however, do not combine the two
techniques and support operations involving only one relation
with limited consideration of joins. The combined adoption of
twins and markers to guarantee the integrity of join operations
has first been proposed in [1], and enriched in [13] with the
support of a semi-join evaluation strategy. These approaches,
while effectively and efficiently managing one-to-one joins,
introduce communication overheads in the evaluation of one-
to-many joins and do not support many-to-many joins and
join sequences. Other works for assessing integrity of query
results have investigated hardware-based solutions, assuming
the adoption of tamper-proof trusted co-processors (e.g., [14]).
Other related work is represented by studies on the integrity of
MapReduce computations (e.g., [15]–[17]). These proposals,
however, are not directly applicable to our scenario because
they either operate on specific computations (e.g., word-
based computations such as count and grep [15]), or rely
on the presence of trusted components for the verification of
the computed results (e.g., [16], [17]). A different, though
related, line of works considered the efficient evaluation of
joins with MapReduce, which are specifically focused on the
scalability issues arising when processing large data collections
(e.g., [18], [19]). Our proposal is complementary to these
solutions, as it provides integrity guarantees of the join result
independently from the technique used for join evaluation.

VIII. CONCLUSIONS

We presented an approach for enabling clients to control
and assess the integrity of join computations performed by an
untrusted computational cloud, agains which confidentiality of
the data is also protected. We believe the work to provide a
step forward towards allowing users to fully take advantage of

the wide and rich offer of cloud computing services without
compromising on security guarantees, then also enabling a
wider adoption of cloud solutions.
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