
Balancing Confidentiality and Efficiency
in Untrusted Relational DBMSs

Ernesto Damiani
DTI - Università di Milano

26013 Crema - Italy

damiani@dti.unimi.it

S.De CapitanidiVimercati
DTI - Università di Milano

26013 Crema - Italy

decapita@dti.unimi.it

Sushil Jajodia
George Mason University
Fairfax, VA 22030-4444

jajodia@gmu.edu

Stefano Paraboschi
DIGI - Università di Bergamo

24044 Dalmine - Italy

parabosc@unibg.it

Pierangela Samarati
DTI - Università di Milano

26013 Crema - Italy

samarati@dti.unimi.it

ABSTRACT
The scope and character of today’s computing environments
are progressively shifting from traditional, one-on-one client-
server interaction to the new cooperative paradigm. It then
becomes of primary importance to provide means of protect-
ing the secrecy of the information, while guaranteeing its
availability to legitimate clients. Operating on-line query-
ing services securely on open networks is very difficult; there-
fore many enterprises outsource their data center operations
to external application service providers. A promising di-
rection towards prevention of unauthorized access to out-
sourced data is represented by encryption. However, data
encryption is often supported for the sole purpose of pro-
tecting the data in storage and assumes trust in the server,
that decrypts data for query execution.

In this paper, we present a simple yet robust single-server
solution for remote querying of encrypted databases on un-
trusted servers. Our approach is based on the use of index-
ing information attached to the encrypted database which
can be used by the server to select the data to be returned
in response to a query without the need of disclosing the
database content. Our indexes balance the trade off between
efficiency requirements in query execution and protection
requirements due to possible inference attacks exploiting in-
dexing information. We also investigate quantitative mea-
sures to model inference exposure and provide some related
experimental results.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational da-
tabases; H.2.7 [Database Management]: Database Ad-
ministration—Security, integrity, and protection; H.3.1 [In-
formation Storage and Retrieval]: Content Analysis
and Indexing—Indexing methods; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—
Query formulation

General Terms
Security, Design

Keywords
Database service, cryptography, indexing

1. INTRODUCTION
In most organizations, databases hold a critical concentra-

tion of sensitive information. Ensuring an adequate level of
protection to databases’ content is therefore an essential part
of any comprehensive security program. Database encryp-
tion [5] is a time-honored technique that introduces an ad-
ditional layer to conventional network and application-level
security solutions, preventing exposure of sensitive informa-
tion even if the database server is compromised. Database
encryption prevents unauthorized users, including intrud-
ers breaking into a network, from seeing the sensitive data
in databases; similarly, it allows database administrators
to perform their tasks without being able to access sensi-
tive information (e.g., sales or payroll figures) in plaintext.
Furthermore, encryption protects data integrity, as possi-
ble data tampering can be recognized and data correctness
restored (e.g., by means of backup copies).

While much research has been made on the mutual in-
fluence of data and transmission security on organizations’
overall security strategy [15], the influence of service out-
sourcing on data security has been less investigated. Con-
ventional approaches to database encryption have the sole
purpose of protecting the data in storage and assume trust
in the server, which decrypts data for query execution. This

�������
������	�
����

��
��
������������ �

��� ��� �! � "�!#� ��$ ��� ! $

! � �� �$ % &�� '(�*)+������� �

�� �,*� ����! ��)-� ��$ ��� ! $

.�/�02143�5�6 798:3�/�0;1�3�5�6

<:=4>@?�A�BC?ED

(1) (2)

(3)(4)

Figure 1: Overall scenario

assumption is less justified in the new cooperative paradigm,
where multiple Web services cooperate and exchange infor-
mation in order to offer a variety of applications. Effective
cooperation between Web services and data owners often re-
quires critical information to be made continuously available
for on-line querying by other services or final users. To name
but a few, telemedicine applications involve network trans-
fers of medical data, location-based services require avail-
ability of users’ cartographic coordinates, while e-business
decision support systems often need to access sensitive in-
formation such as credit ratings.

Customers, partners, regulatory agencies and even sup-
pliers now routinely need access to information originally
intended to be stored deep within companies’ information
systems. Operating on-line querying services securely on
open networks is very difficult; for this reason, many en-
terprises prefer to outsource their data center operations to
external application providers rather than allowing direct ac-
cess to their databases from potentially hostile networks like
the Internet. Furthermore, outsourcing relational databases
to external providers promises higher availability and more
effective disaster protection than in-house operations. Re-
mote storage technologies (e.g., storage area networks [16])
are used to place sensitive and even critical company infor-
mation at a provider’s site, on systems whose architecture
is specifically designed for database publishing and access is
controlled by the provider itself.

As a consequence of this trend toward outsourcing, highly
sensitive data are now stored on systems run in locations
that are not under the data owner’s control, such as leased
space and untrusted partners’ sites. Therefore, data confi-
dentiality and even integrity can be put at risk by outsourc-
ing data storage and management. Adoption of security
best practices in outsourced locations, such as the use of
firewalls and intrusion detection tools, is not under the data
owner’s control. In addition, data owners may not entirely
trust providers’ discretion; on the other hand, preventing a
provider from inspecting data stored on its own machines is
very difficult. For this kind of services to work successfully
it is therefore of primary importance to provide means of
protecting the secrecy of the information remotely stored,
while guaranteeing its availability to legitimate clients.

The requirement that the database content remains secret
to the database server itself introduces several new inter-
esting challenges. Conventional encrypted DBMSs assume
trust in the DBMS itself, which can then decrypts data for
query execution. In an outsourced environment scenario,

such an assumption is not applicable anymore as the party
to which the service is being outsourced cannot be granted
full access to the plaintext data. Since confidentiality de-
mands that data decryption must be possible only at the
client side, techniques are needed enabling untrusted servers
to execute queries on encrypted data. A first proposal to-
wards the solution of this problem was presented in [8] were
the authors proposed storing, together with the encrypted
database, additional indexing information. Such indexes can
be used by the untrusted DBMS to select the data to be re-
turned in response to a query. The basic idea is illustrated
in Figure 1. Each plaintext query (1) is mapped onto a cor-
responding query (2) on the indexing content and executed
in that form at the untrusted server. The untrusted server
returns the encrypted result (3), which is then decrypted at
the trusted front end. If indexing information is not exact,
an additional query (4) may need to be executed to eliminate
spurious tuples that do not belong to the result set.

The major challenge in this scenario is how to compute
and represent indexing information. Two conflicting re-
quirements challenge the solution of this problem: on the
one side, the indexing information should be related with
the data well enough to provide for an effective query execu-
tion mechanism; on the other side, the relationship between
indexes and data should not open the door to inference and
linking attacks that can compromise the protection granted
by encryption [6]. The indexing information provided in [8],
based on using as indexes name of sets collecting together
intervals of values, proves limited in this respect (see Sec-
tion 5).

In this paper we provide an approach to indexing en-
crypted data constructed with efficiency and confidentiality
in mind, providing a balance between the two. The contribu-
tions of this paper can be summarized as follows. First, we
propose an approach to indexing encrypted data based on
direct encryption and hashing. Second, we provide a mea-
sure of inference exposure of the encrypted/indexed data
that nicely models the problem in terms of graph automor-
phisms. Finally, we enhance the indexing information to
provide for efficient execution of interval-based queries.

2. DATA ORGANIZATION
We consider a relational DBMS where data are organized

in tables (e.g., table accounts in Figure 2) where the un-
derlined attribute represents the key of the table. In prin-
ciple, different granularity choices are possible for database
encryption, such as encrypting at the level of whole tables,
columns (i.e., attributes), rows (i.e., tuples) and cells (i.e.,
elements). Encrypting at the level of tables and columns im-
plies that the whole table (column resp.) involved in a query
should always be returned, providing therefore no means
for selecting the data of interest and leaving to the client
the burden of query execution on a possibly huge amount
of data. On the other hand, supporting encryption at the
finest possible level of single cells is also inapplicable as it
would severely affect performance, since the client would be
required to execute a possibly very large number of decrypt
operations to interpret the results of queries [9]. In the same
line as [8], we assume encryption to be performed at the tu-
ple level. To provide the server with the ability to select a set
of tuples to be returned in response to a query, we associate
with each encrypted tuple a number of indexing attributes.
An index can be associated with each attribute in the origi-

Accounts

Account Customer Balance

Acc1 Alice 100

Acc2 Alice 200

Acc3 Bob 300

Acc4 Chris 200

Acc5 Donna 400

Acc6 Elvis 200

Enc Accounts1

Enc tuple IA IC IB

x4Z3tfX2ShOSM π α µ

mNHg1oC010p8w $ α κ

WsIaCvfyF1Dxw ξ β η

JpO8eLTVgwV1E % γ κ

qctG6XnFNDTQc ς δ θ

4QbqC3hxZHklU Γ ε κ

Enc Accounts2

Enc tuple IA IC IB

x4Z3tfX2ShOSM π α µ

mNHg1oC010p8w $ α κ

WsIaCvfyF1Dxw ξ β µ

JpO8eLTVgwV1E % β κ

qctG6XnFNDTQc ς δ µ

4QbqC3hxZHklU Γ δ κ

Figure 2: A plaintext relation and possible corre-
sponding encrypted relations

nal relation on which conditions need to be evaluated in the
execution of queries.

Each plaintext relation is represented as a relation with
an attribute for the encrypted tuple and as many attributes
as indexes to be supported. More specifically, each plaintext
tuple t(A1, . . . , An) is mapped onto a tuple t′(Tk, I1, . . . , Im)
where m ≤ n, t′[Tk] = Ek(t), with Ek() denoting an invert-
ible encryption function over key k, and each Ii corresponds
to the index over some Aj . Figure 2 illustrates an example
of a plaintext table accounts and the corresponding en-
crypted/indexed1 relation enc accounts1 where Enc tuple

contains the encrypted triples, while IA, IC , and IB are
indexes over attributes Account, Customer, and Balance

respectively. For the sake of readability we use easy-to-
understand names for the attributes and table names in
the encrypted schema and Greek letters as index values.
Of course, in a real example, attributes and tables names
would be obfuscated and actual values for indexes would be
the results of an invertible encryption function and would
then look like the ones reported for the encrypted tuples in
Figure 2.

Let us now discuss how to represent indexing information.
A trivial approach to indexing would be to use the plain-

text value of each cell. This approach is obviously not suit-
able as plaintext data would be disclosed.

An alternative approach providing the same fine-grained
selection capability without disclosing plaintext values is to
use the individual encrypted values as index. Then, for each
indexed cell the outcome of an invertible encryption function
over the cell value is used. Formally, t[Ii] = Ek(t[Ai]). Exe-
cution is simple: each plaintext query can be translated into
a corresponding query on encrypted data by simply apply-
ing the encryption function to the values mentioned in the
query. For instance, with reference to the tables in Figure 2,
query “select * from Accounts where customer =
Alice” would be translated into “select Enc tuple from
Enc Accounts1 where IC = α”

This solution has the advantage of preserving plaintext
distinguishability and together with precision and efficiency
in query execution, as all the tuples returned belong to the
query set of the original query. In particular, the solution
is convenient for queries involving equality constraints over
the attributes. Also, since equality predicates are almost
always used in the computation of joins, a join applied on

1In the remainder of the paper, for the sake of simplicity, we
shall designate this table format with the term encrypted.

two tables that use the same encryption function on the join
attribute can be computed precisely.

As a drawback, however, in this approach encrypted val-
ues reproduce exactly the plaintext values distribution with
respect to values’ cardinality (i.e., the number of distinct
values of the attribute) and frequencies; this could open the
doors to frequency-based attacks (see next section).

A third alternative approach to counter these attacks, is to
use as index the result of a secure hash function over the at-
tribute values rather than straightforwardly encrypting the
attributes; this way, the attribute values’ distribution can be
flattened by the hash function. A flexible characteristic of a
hash function is the cardinality of its co-domain B, which
allows us to adapt to the granularity of the represented data.
When B is small compared with the cardinality of the at-
tribute, the hash function can be interpreted as a mechanism
that distributes tuples in B buckets; a good hash function
(and a secure hash has to be good) distributes uniformly
the values in the buckets. For instance, the Accounts ta-
ble in Figure 2 can be indexed by hashing considering three
buckets (α, β, δ) for IC and two buckets (µ, κ) for IB. The
encrypted relation Enc accounts2 in Figure 2 can then
be obtained when Alice is mapped onto α, Bob and Chris

are both mapped onto β, while Donna and Elvis are both
mapped onto δ. Also, 200 is mapped to κ while all other
balance values are mapped onto µ. With respect to direct
encryption, hash-based indexing provides more protection as
different plaintext values are mapped onto the same index.

Using attribute hashes in remote tables permits an ef-
ficient evaluation of equality predicates within the remote
server. If the same hash function is used to compute values
of two attributes of different tables on which the equality
predicate must be evaluated in the context of a join query,
the join query itself can be efficiently computed at the re-
mote server simply by combining all of the pairs of tuples
characterized by the same hash value.

When direct encryption is used for indexing, the result
returned by a query on the encrypted table is exactly the
query set of the original query. The only task left for the
front end is then decryption. By contrast, when hashing is
used, the results will often include spurious tuples (all those
belonging to the same bucket of the index) that will have
to be removed by the front end receiving it. In this case,
the additional burden on the front end consists in purging
from the result returned by the remote server all the pairs of
tuples that, once brought back in plaintext form, do not sat-
isfy the equality predicate on the join attribute. Intuitively,
every query Q of the front end corresponds to a query Q′

to be passed onto the untrusted DBMS for execution over
the encrypted database and a query Q′′ to be executed at
the front end on the results of Q′. To illustrate, consider
the encrypted table Enc Accounts2 in Figure 2 and the
user query Q “select balance from Accounts where
customer=Bob”. The query is translated as Q′ = “select
Enc tuple from Enc Account2 where Ic = β” for exe-
cution by the untrusted DBMS which returns the third and
fourth encrypted tuple. The trusted front end then decrypts
the two obtaining tuples third and fourth of the original ta-
ble Accounts and eliminates the latter (whose presence was
due to index collision) by reevaluating the condition.

3. INFERENCE EXPOSURE COEFFICIENTS
Being closely related to plaintext data, indexing informa-

tion could open the door to inferences that exploit data anal-
ysis techniques to reconstruct the database content and/or
break the indexing code. It is important to be able to evalu-
ate quantitatively the level of exposure associated with the
publication of certain indexes and therefore to determine the
proper balance between index efficiency and protection.

There are different ways in which inference attacks could
be modeled. We distinguish two notions that differ in the
assumption about the attacker’s prior knowledge. In com-
mon, the two scenarios have the fact that the attacker has
complete access on the encrypted relations.

In the first case, which we call Freq+DBK scenario, we
assume the attacker is aware of the distribution of plain-
text values in the original database. This knowledge can
be exact (e.g., in a database storing accounting information
the account holder list can be fully known) or approximated
(e.g., the ZIP codes of the geographical areas of the account
holders can be estimated based on population data). For
the sake of simplicity, in the following we will assume exact
knowledge (which represents the worst case scenario). In
this scenario there are two possible inferences that the at-
tacker can draw: i) the plaintext content of the database,
that is, determine the existence of a certain tuple (or as-
sociation of values) in the original database, and/or ii) the
indexing function, that is, determine the correspondence be-
tween plaintext values and indexes.

In the second case, which we call DB+DBK scenario, we
assume the attacker has both the encrypted and the plain-
text database. In this case the inference allows the attacker
to break the indexing function, thus establishing the cor-
relation between plaintext data and the corresponding in-
dex values. The hosting server has then available both the
plaintext data and the corresponding indexes, by breaking
indexing, the malicious server will then be able to decode
any additional encrypted tuple that can be inserted in the
database.

In the remainder of this section we introduce two coeffi-
cients to assess the exposure of indexes in the two scenarios
above. The indexing code we refer to is direct encryption;
besides being easier to understand, it can be regarded as a
worst case situation of the general hashing indexing.

3.1 Freq+DBK Exposure
To illustrate this scenario, let us consider the example in

Figure 2. The attacker knows the encrypted Enc accounts1;
also, she knows that attribute Account has unique values
and she knows the values (and their occurrences) appearing
independently in attributes Customer and Balance:

Customer={Alice,Alice,Bob,Chris,Donna,Elvis}
Balance={100,200,200,200,300,400}.
Although the attacker does not know which index cor-

responds to which plaintext attribute, she can determine
the actual correspondence by comparing their occurrence
profiles. Namely, she can determine that IA, IC , and IB

correspond to attributes Account, Customer and Balance

respectively. The attacker can then infer that κ represents
value 200 and index α represents value Alice (indexing in-
ference). She can also infer that the plaintext table contains
a tuple associating values Alice and 200 (association infer-
ence). The other occurrence of the index value correspond-
ing to Alice (i.e., α) is associated with a balance other than

200. Since there are only three other possible values, the
probability of guessing it right is 1/3. In other terms, the
probability of each association depends on the combination
of occurrences of its values.

Intuitively, the basic protection from inference in the en-
crypted table is that values with the same number of occur-
rences are indistinguishable to the attacker. For instance, all
customers but Alice are indistinguishable from one another,
as well as all amounts but 200. By contrast, Alice and 200

stand out being, respectively, the only customer appearing
twice and the only balance appearing three times.

The exposure of an encrypted relation to indexing infer-
ence can then be thought of in terms of an equivalence re-
lation where indexes (and plaintext values) with the same
number of occurrences belong to the same equivalence class.
For instance, denoting each equivalence class with a dot no-
tation showing the attribute name and its number of occur-
rences (e.g., class A.1 contains all the values of attribute A
that occur once), we obtain:

A.1 = {π, $, ξ, %, ς, Γ} = {Acc1,Acc2,Acc3,Acc4,Acc5,Acc6}
C.1 = {β, γ, δ, ε} = {Bob,Chris,Donna,Elvis}
C.2 = {α} = {Alice}
B.1 = {µ, η, θ} = {100,300,400}
B.3 = {κ}={200}

The quotient of the encrypted table with respect to the
equivalence relation defined above is the following.

Quotient Table
qtA qtC qtB

A.1 C.2 B.1
A.1 C.2 B.3
A.1 C.1 B.1
A.1 C.1 B.3
A.1 C.1 B.1
A.1 C.1 B.3

IC Table
icA icC icB

1/6 1 1/3
1/6 1 1
1/6 1/4 1/3
1/6 1/4 1
1/6 1/4 1/3
1/6 1/4 1

The exposure of the encrypted table to inference attacks
can then be evaluated by looking at the distinguishable char-
acteristics in the quotient table. In particular, the asso-
ciation 〈Alice,200〉 (and its correspondence 〈α, κ〉) can be
spotted with certainty being the encounter of two single-
ton equivalence classes (C.2 and B.3). For the other values,
probabilistic considerations can be made by looking at the
IC table, that is the table of the inverse of the cardinalities
of the equivalence classes. In fact, the probability of disclos-
ing a specific association is the product of the inverses of the
cardinalities. The exposure of the whole relation (or projec-
tion of it) can then be estimated as the average exposure of
each tuple in it. Formally we can write the exposure coeffi-
cient E associated with an encrypted relation with inverse
cardinality table IC as:

E =
1

n

n�

i=1

k�

j=1

ICi,j (1)

Here, i ranges over the tuples while j ranges over the
columns.

With reference to our example we have a value of E = 1/18
for the protection of the whole relation, and a value of 1/3
for the pair 〈Customer, Balance〉.

Note how a long tailed distribution of values (i.e., many
values having low occurrence) can decrease the exposure to
association attacks. This reflects the fact that while the
attacker has information on many values, they all fall into

the same equivalence class resulting indistinguishable from
one another.

Taking into account the fact that each index value cor-
responds to a single plaintext one, the exposure computed
above may be regarded as a lower bound to vulnerability to
association inference. Let us then now consider the effect on
the exposure when indexes are obtained by hashing values
rather than by direct encryption. In this case each hashed
value can correspond to multiple attribute values (as it is the
case for index value β in table Enc Accounts2). Therefore,
each equivalence class on hashed values can be composed of
multiple subsets of plaintext values. For instance, any of the
index values α, β, and δ in Enc Accounts2 can correspond
to any pair of customer values.

In a scenario where all plaintext values are distinct, their
hashed values multiplicity is entirely due to collision. Then,
each hash value in the equivalence class of multiplicity k can
represent any k values extracted from the original set, that
is, there are � n

k � different possibilities. The identification
of the correspondence between hashed and original values
would require finding all possible partitions of the original
values such that the sum of their occurrences is the cardi-
nality of the hashed value. Computing the corresponding
re-arrangement of equivalence classes would then equate to
solving a knapsack problem [4]. In general this introduces
a high degree of uniformity in the indexes and inference at-
tacks become negligible.

3.2 DB+DBk Exposure
We now consider a situation where the attacker knows

both the encrypted and the plaintext database. A scenario
for this attack occurs when the database owner switches
from no encryption to the use of encryption as presented in
this paper. A malicious user with access to the database
server may then be very interested in reconstructing the
correspondence between the plaintext and index values, in
order to monitor the evolution of the database and keep
access to most of its content, independently of the strength
of the encryption function adopted.

The attacker knows precisely the distribution of every
value and the relationships among the different values. The
additional knowledge available to the attacker requires a
more precise model than the one used in the previous sec-
tion. We present a model for the attack that permits also
to use robust and consolidated algorithmic techniques to de-
rive a precise characterization of the solution space and of
the exposure coefficient that needs to be redefined in this
context.

3.2.1 The RCV-graph
Given a table T with attributes A1, A2, . . . An and tu-

ples t1, t2, . . . tm, we build a 3-colored undirected graph G =
(V, E) called the RCV-graph (i.e., the row-column-value–
graph) in the following way. The set of vertices V contains
one vertex for every attribute (all of color “column”), one
vertex for every tuple (all of color “row”), and one vertex
for every distinct value in each of the attributes (all of color
“value”); if the same value appears in different attributes,
a distinct vertex is introduced for every attribute in which
the value appears. The set of edges E is built first adding
edges connecting the vertices representing columns with the
vertices representing values appearing in the corresponding
columns; then, edges are added connecting each tuple ver-

t1

t2

t3

t4

t5

t6

Col1 Col2

�

�

�

�

�

�

�

	

Figure 3: The RCV-graph from relation
Enc Accounts1 of Figure 2

tex with the vertices representing values appearing in the
tuple. To illustrate, consider table Enc Accounts1 in Fig-
ure 2, restricted to attributes Customer and Balance. We
have two vertices labeled Col1 and Col2 for the attributes,
six vertices labeled t1 . . . t6 for the tuples, and nine vertices
labeled α . . . θ for the distinct values appearing in the at-
tributes. The addition of all the edges produces the RCV-
graph depicted in Figure 3.

An important property is that the RCV-graph built start-
ing from the plaintext database is identical to the RCV-
graph built starting from the encrypted database, since the
cryptographic function only realizes a biunivocal mapping
between plaintext and index values (in the relational model,
the order of tuples and the order of attributes within a re-
lation are irrelevant). The identification of the correspon-
dence between plaintext and index values requires then to
establish a correspondence between the vertex labels and
the plaintext values discussed in the following section.

3.2.2 RCV-graph Automorphism
The identification of the correspondence between the la-

bels on the graph G = (V, E) and the plaintext values, when
the plaintext database is known, can exploit information on
the topological structure of the data that permits a more
precise reconstruction than the one possible when the only
information available is the distribution of values in each
attribute. In the example, it is possible to correctly iden-
tify the correspondence between label Col1 and attribute
Customer, label Col2 and attribute Balance, label α and
value Alice, label µ and value 100, label κ and value 200.
Also, label t1 will be associated with the first tuple and la-
bel t2 with the second. For the remaining vertices it is only

possible to obtain a probabilistic estimate of the correspon-
dence.

The search for a correspondence that we above realized
on the intuition, is strongly related to the presence of au-
tomorphisms in the RCV-graph. An automorphism of a
graph is an isomorphism of the graph with itself. For-
mally, an automorphism of a graph is a permutation Γ of the
graph labels such that G(V, E) = G(V Γ, E) (i.e., ∀e(vi, vj) ∈
E, e(vΓ

i , vj
Γ) ∈ E). If the graph is colored (as in our case),

nodes with different color cannot be exchanged by the per-
mutation. The identical permutation trivially satisfies the
relationship; then, at least one automorphism exists for any
graph. When the RCV-graph presents only the trivial auto-
morphism, the correspondence between the vertex labels and
the plaintext values can be fully determined and the knowl-
edge of the plaintext database permits a full reconstruction
of the correspondence between plaintext and index values.
When there are several automorphisms in the RCV-graph,
the identification of a vertex can be uncertain, as there are
many alternative ways to reconstruct the correspondence be-
tween the vertices. In the example, the RCV-graph presents
4 automorphisms, that we represent here by the permuta-
tions of labels that characterize them. Each permutation is
represented by a different order of the symbols in the fol-
lowing sequences.

A1 {Col1, Col2, t1, t2, t3, t4, t5, t6, α, β, γ, δ, ε, µ, η, κ, θ }

A2 {Col1, Col2, t1, t2, t5, t4, t3, t6, α, δ, γ, β, ε, µ, θ, κ, η }

A3 {Col1, Col2, t1, t2, t3, t6, t5, t4, α, β, ε, δ, γ, µ, η, κ, θ }

A4 {Col1, Col2, t1, t2, t5, t6, t3, t4, α, δ, ε, β, γ, µ, θ, κ, η }

The 4 automorphisms derive from the choice in the or-
der of the two vertices sets (t3,β,η)-(t5,δ,θ) and (t4,γ)-(t6,ε).
The number of automorphisms could appear as a measure
of the protection against inference attacks, but we observe
that it is not a good evaluator. In fact, in all the databases
we studied the number of automorphisms increases exponen-
tially with the size of the graph and may reach considerable
(and inexpressive) values even for graphs of limited size;
also, situations with evidently different protection may be
characterized by the same number of automorphisms. We
devised a more precise measure of protection, which consid-
ers the number of alternatives that are offered for the value
of a label. The intuition is the following: for each value
in a tuple in the database, we may have a given probabil-
ity of guessing it based on the knowledge of the plaintext
database: if all the RCV-graph automorphisms do not per-
mute the corresponding vertex, we will have a probability
(p = 1) of identifying its correct value. In general, if we have
K automorphisms for the RCV-graph and in k of them the
label assigned to vertex vi is correct, we will have a prob-
ability pi = k/K of correctly identifying the vertex (i.e.,
we ignore row and column vertices). Since we are inter-
ested only in the identification of the correspondence for the
vertices representing attribute values, we limit the consider-
ation of the exposure coefficient to these nodes. Given the
value pi of each vertex vi representing an attribute value,
we estimate the probability of guessing right a generic value
by computing the average on all the vertices of the proba-
bility pi, obtaining the attribute exposure coefficient AEC =� m

i=1
pi/m.

The automorphism problem has been extensively stud-
ied in the context of graph theory and many results can be
directly applied to our context. First, the set of automor-

phisms of a graph constitute a group (called the Automor-
phism Group of the graph), which, for undirected graphs
like ours, can be described by the coarsest equitable parti-
tion [12] of the vertices, where each element of the partition
(each subset appearing in the partition) contains vertices
that can be substituted one for the other in an automor-
phism. The Nauty algorithm that identifies the automor-
phism group of the graph [12], starts from a partition on
the vertices that can be immediately derived grouping all
the vertices with the same color and connected by the same
number of edges. This partition is then iteratively refined,
and a concise representation of all the automorphisms is pro-
duced. From the structure of the partition, it derives that
all the vertices appearing in the generic partition element
Cj are equivalently substitutable in all the automorphisms;
from this observation, it derives that the probability pi of
a correct identification of a vertex vi ∈ Cj is equal to the
inverse of the cardinality of Cj , 1/ | Cj |.

Then, for the identification of the AEC it is sufficient to
identify the number of elements in the equitable partition
and the total number of attribute vertices (i.e., it is not
necessary to keep track of the number of vertices in each
partition). In fact, with | Cj | vertices in the partition ele-
ment Cj , n elements in the equitable partition and a total
number m of vertices, the exposure coefficient of the table
is:

m�

i=1

pi/m =

n�

j=1

�

vi∈Cj

pi/m =

n�

j=1

�

vi∈Cj

1/(| Cj | m) =

n�

j=1

1/m = n/m

In the example, the equitable partition for attribute ver-
tices is {(α)(β, δ)(γ, ε)(µ)(η, θ)(κ)} and the AEC= 6/9 =
2/3. As a check, the reader can verify on the RCV-graph
that the vertices appearing in singleton elements are asso-
ciated with pi = 1 and those in the remaining elements are
associated with pi = 1/2. The average of pi on all the ver-
tices returns 2/3.

When the structure of the database is completely absent,
as it occurs when all the attribute values appear once in the
database, the AEC is minimal at 1/m. The contribution
of the knowledge of the plaintext database increases when
the structure of the RCV-graph derived from it can impose
restrictions that limit the number of options for a vertex,
increasing the exposure coefficient.

3.2.3 Experimental results
We implemented a tool that takes in input a relational

database and builds the RCV-graph that models it, with the
construction presented in the previous section. The program
then invokes on the RCV-graph the Nauty algorithm [12],
which is able to compute efficiently the automorphism group
(around 15 minutes on a 700MHz Pentium III PC running
Linux, for the greatest RCV-graph derived from a 2000 4-
tuple table containing 2262 distinct values). The output of
the program is then analyzed to reconstruct the equitable
partition, that permits to determine the attribute exposure
coefficient of the table. The tool was the basis for an anal-
ysis of the evolution of the exposure coefficient for tables of
progressively increasing size and for an increasing number
of indexes.

We retrieved from an Italian government site a table de-
scribing the professors of the universities in our region. The
table listed 2340 professors, with 4 attributes: Name (first

Number of tuples
Attributes 200 500 1,000 2,000

{Name,Role} 14/206 14/507 16/1007 18/2006
{Name,Disc.} 21/269 39/585 61/1093 83/2234
{Name,Fac.} 21/209 21/509 21/1009 44/2019
{Name,Role,Disc.} 176/275 316/592 452/1100 881/2241
{Name,Fac.,Role} 66/215 72/516 74/1017 152/2027
{Name,Fac.,Disc.} 141/278 224/594 292/1103 599/2255
{Name,Fac.,Role,Disc.} 242/284 439/601 743/1110 1467/2262

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 500 1000 2000

A
ttr

ib
ut

e
ex

po
su

re
 c

oe
ffi

ci
en

t

Number of tuples

NR
ND
NF

NDR
NFR
NFD

NFDR

(b)

Figure 4: Tabular representation of the experimen-
tal results (a) and their graphical representation (b)
(curve labels refer to the initial of the attributes)

name and last name combined in a single attribute), Fac-
ulty (the name of the professor faculty), Role (the status of
the professor: full, associate, assistant, etc., following the
Italian structure) and Discipline (the field of the professor,
using a classification by the Italian government). We applied
the tool using a progressively greater number of tuples; we
did not use the full table, but stopped at 2000 tuples. We
considered all the combinations of attributes containing at-
tribute Name; this choice was due to the fact that the anal-
ysis is meaningful only if at least two attributes are present
in the table (otherwise, no correlation among attributes can
be observed) and it was useful to keep a common attribute
in all the experiments. The results appear in tabular form
in Figure 4(a) and graphically in Figure 4(b).

The main result of the experiments is the finding that the
number of attributes used for the index has a great impact
on attribute exposure. With only two attributes, exposure
coefficients tend to be quite low; when all the 4 attributes
are used as index, the exposure is considerable.

Another question answered by the experiments is how the
exposure evolves with an increase in the database size. What
we observe is that the exposure slowly decreases with the size
of the database. The explanation is that as the number of
tuples increases, a greater number values become character-
ized by a distinct profile and are identifiable. At the same
time, the new tuples introduce new values that are infre-
quent and indistinguishable, and this component wins over
the former.

4. SUPPORTING INTERVAL-BASED
QUERIES

The solution presented in Section 2 does not support well
interval-based queries, as a condition over an interval I would
need to be mapped onto as many equality conditions as there
are values in I. Of course, an efficient support for interval-
based queries would be possible by using order-preserving
encryption (imposing Ek(ti[A]) < Ek(tj [A]) whenever ti[A] <
tj [A]). However, this solution is not viable as comparing the
ordered sequences of index and plaintext values would lead
an easy reconstruct the correspondence.

Interval-based queries are efficiently supported in tradi-
tional DBMSs with the use of B+-trees (whose construction
and management is left to the DBMS). B+-trees are one of
the most common solutions for the construction of indexes.
A B+-tree (balanced tree) satisfies the constraint that the
number of arcs that is necessary to traverse to go from the
root to a leaf is the same for every leaf. A B+-tree with fan
out F is a B-tree where there are no nodes with a number of
outgoing arcs greater than F ; additionally, all the non-leaf
nodes, except the root, must have at least dF/2e outgoing
arcs.

Given a relation R and a subset of its attributes K, a B+-
tree built on the key K of R permits to access the tuples of
R with a given value for the key. Each node presents f − 1
key values, where f is the number of outgoing arcs; each key
value ki is associated with the outgoing arc ai, except for
the first arc a0. To access a tuple characterized by key value
k, the nodes are considered starting from the root, and in
each node if k is greater than or equal to ki and smaller than
ki+1, the arc ai is chosen; if k is smaller than k1, arc a0 is
chosen; if k is greater than or equal to kf−1, the arc af−1

is chosen. In the leaves, the arcs are replaced by the IDs of
the encrypted tuples. A B+-tree structure has in each leaf
an outgoing arc that connects each leaf to the one following
it in the order supported by the tree. This pointer supports
the evaluation of range predicates (the inferior limit of the
interval is first searched on the tree; then, the leaves are
navigated, until the superior limit of the search interval is
reached). Figure 5(a) illustrates an example of B+-tree built
on attribute Customer. Here, each node can include two key
values.

In our context, however, the untrusted DBMS only knows
the encrypted data and any B+-tree defined on the indexes,
not reflecting the order of the plaintext values, is practi-
cally useless for query execution. The only possible way to
solve this problem is to leave the task of determining B+-
tree information2 to the trusted front end. The B+-tree can
then be encrypted and stored at the untrusted DBMS (as
the trusted front end has limited storage capacities). Obvi-
ously, protecting the B+-tree by encrypting each of its fields
is unfeasible, as it would disclose to the server the ordering
relationship between the index values. As an alternative,
we propose to encrypt each B+-tree node as a whole. The
original B+-tree is then represented at the untrusted DBMS
as a table with two attributes: a node ID, automatically as-
signed by the system on insertion, and an encrypted value,
representing the node content. Figure 5(b) shows the plain-
text representation of the B+-tree table and its encrypted
counterpart.

2We purposely avoid the use of the term index so not to
create confusion with the indexes introduced in Section 2.

Chris Donna HenryGaryFrankElvis IanAlice Bob John

Henry IanFrank

Gary

Elvis

Bob Donna

Chris

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14 15

(a)

B+-tree Table
ID Node

0 (1,Elvis,2, ,)
1 (3,Chris,4, ,)
2 (5,Gary,6, ,)
3 (7,Bob,8, ,)
4 (9,Donna,10, ,)
5 (11,Frank,12, ,)
6 (13,Henry,14, ,)
7 (Alice, ,8)
8 (Bob, ,9)
9 (Chris, ,10)
10 (Donna, ,11)
11 (Elvis, ,12)
12 (Frank, ,13)
13 (Gary, ,14)
14 (Henry, ,15)
15 (Ian,John,)

Encrypted B+-tree Table
ID C

0 SeCS0U/7ZIY.A
1 /WKu5y8laqK82
2 jzKzVi0D1as8E
3 AXYaqohgyVObU
4 IUf7R.PK5h5fU
5 rzaslxohWS2l2
6 EXITGCUlYTVBc
7 uOtdm/HDXNSqU
8 GLDWRnBGIvYBA
9 a9yl36PA3LeLk
10 H6GwdJpXiU8MY
11 uOtdm/HDXNSqU
12 zj33kVaNvLFVk
13 V9rMw904cix3w
14 xTFcWtd6.IE.A
15 ji.gtDER6Hjis

(b)

Figure 5: An example of B+-tree on attribute Customer (a) and corresponding tabular and encrypted repre-
sentation (b)

The advantage of this solution is that the content of the
B+-tree nodes is not visible to the untrusted DBMS. The
drawback, however, is that the B+-tree traversal can now
only be performed by the trusted front end. Intuitively, to
execute an interval query, the front end has to perform a
sequence of queries that retrieve tree nodes at progressively
deeper levels; when the leaf is reached, the node IDs in the
leaf can be used to retrieve the tuples belonging to the in-
terval. For instance, if it is necessary to retrieve all the
customers whose name starts with a letter in the interval D-
F using the B+-tree, the front end will produce a sequence
of queries that will access in sequence nodes 0, 1, 4, and 10;
then, other queries will be used to scan the leaves, accessing
nodes 10, 11, and 12. In the Appendix we present a simple
cost model that permits to identify the optimal size for the
tree node.

5. RELATED WORK
Database encryption has been proposed since long as a

fundamental tool for providing strong security for “data at
rest”. Thanks to recent advances in processors’ capabili-
ties and to the development of fast encryption techniques,
the notion of encrypted database is nowadays well recog-
nized, and several commercial products reached the mar-
ket. However, developing a sound security strategy includ-
ing database encryption still involves many open issues. Key
management and security are of paramount importance in
any encryption-based system and were therefore among the
first issues to be investigated in the framework of database
encryption [5]. Later, techniques have been developed aimed

at efficiently querying encrypted databases [14], some of
them related to parallel efforts by the text retrieval com-
munity [11] for executing hidden queries, that is, queries
where only the ciphertext of the query arguments is made
available to the DBMS. On the other hand, architectural
research investigated optimal sharing of the encryption bur-
den between secure storage, communication channels and
the application where the data originates [10], looking for a
convenient trade-off between data security and application
performance. Recently, much interest was devoted to secure
handling of database encryption in distributed, Web based
execution scenarios, where data management is outsourced
to external services [1]. The main purpose of this line of
research is finding techniques for delegating data storage
and the execution of queries to untrusted servers while pre-
serving efficiency. The index of range technique proposed
in [8] in the framework of a database-service-provider archi-
tecture relies on partitioning client tables’ attributes’ do-
mains into sets of intervals. The value of each remote table
attribute is stored as the index countersigning the interval to
which the corresponding plain value belongs. Indexes may
be ordered or not, and the intervals may be chosen so that
they have all the same length, or are associated with the
same number of tuples. This representation supports effi-
cient evaluation on the remote server of both equality and
range predicates; however, it makes it awkward to manage
the correspondence between intervals and the actual values
present in the database. A distinct, though related solu-
tion is proposed in [1], where smart cards are used for key
management.

On a different line of related work, we note that the pro-
tection/exposure given by hashing can resemble the general-
ization approach for microdata protection; and correspond-
ingly inference attacks exploiting it can resemble record link-
age techniques examined in that context [13]. However,
the two problems are quite different as while generalization
maintains information on plaintext values (simply collapsing
more values in a given interval), hashing is not associated
with any semantics.

Also, it is important to note that the problem we consider
differs from existing approaches protecting encrypted data,
which investigated solutions as for the private information
retrieval problem (protecting the query, that is, the infor-
mation on what the user is looking for) or the problem of
limiting the amount of data that users can acquire.

6. CONCLUSIONS
In this paper, we proposed a solution to the problem of

database outsourcing on untrusted servers by providing a
hash-based method for database encryption suitable for se-
lection queries. Also, we gave a quantitative evaluation of
our method’s vulnerability, showing that even straightfor-
ward direct encryption can provide an adequate level of se-
curity against inference attacks, as long as a limited number
of index attributes is used. In order to execute interval-
based queries, we adapted to the database-service-provider
model the B+-tree structures typically used inside DBMSs.

7. ACKNOWLEDGMENTS
The work reported in this paper was partially supported

by the Italian MURST within the KIWI and MAPS projects.

8. REFERENCES
[1] L. Bouganim and P. Pucheral. Chip-secured data

access: Confidential data on untrusted servers. In
Proc. of the 28th International Conference on Very
Large Data Bases, pages 131–142, Hong Kong, China,
August 2002.

[2] S. Ceri, M. Negri, and G. Pelagatti. Horizontal data
partitioning in database systems. In Proc. of the ACM
SIGMOD International Conference on Management of
Data, Orlando, Florida, 1982.

[3] H. Chao, T.Y. Wu, and J. Chen. Security-enhanced
packet video with dynamic multicast throughput
adjustment. International Journal of Network
Management, 11(3):147–159, 2001.

[4] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.
Introduction to Algorithms. McGraw-Hill, New York,
1990.

[5] G.I. Davida, D.L. Wells, and J.B. Kam. A database
encryption system with subkeys. ACM Transactions
on Database Systems, 6(2):312–328, June 1981.

[6] D.E. Denning. Cryptography and Data Security.
Addison-Wesley, 1982.

[7] S. Ghandeharizadeh and D. DeWitt. A multiuser
performance analysis of alternative declustering
strategies. In Proc. of the 6th Int. Conf. on Data
Engineering, 1990.

[8] H. Hacigümüs, B. Iyer, C. Li, and S. Mehrotra.
Executing SQL over encrypted data in the
database-service-provider model. In Proc. of the ACM
SIGMOD’2002, Madison, Wisconsin, USA, June 2002.

[9] H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing
database as a service. In Proc. of the 18th
International Conference on Data Engineering, San
Jose, California, USA, February 2002.

[10] C.D. Jensen. Cryptocache: a secure sharable file cache
for roaming users. In Proc. of the 9th Workshop on
ACM SIGOPS European workshop: beyond the PC:
new challenges for the operating system, pages 73–78,
Kolding, Denmark, September 2000.

[11] S.T. Klein, A. Bookstein, and S. Deerwester. Storing
Text retrieval systems on CD-ROM: compression and
encryption considerations. ACM Transactions on
Information Systems, 7(3):230–245, July 1989.

[12] B.D. McKay. Practical graph isomorphism.
Congressus Numerantium, 30:45–87, 1981.

[13] P. Samarati. Protecting respondent’s privacy in
microdata release. IEEE Transactions on Knowledge
and Data Engineering, 13(6):1010–1017,
November/December 2001.

[14] D.X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Proc. of
the 2000 IEEE Symposium on Security and Privacy,
pages 44–55, Oakland, CA, USA, May 2000.

[15] J.P. Walton. Developing an enterprise information
security policy. In Proc. of the 30th annual ACM
SIGUCCS Conference on User Services, Providence,
Rhode Island, USA, 2002.

[16] J. Ward, M. O’Sullivan, T. Shahoumian, and
J. Wilkes. Appia: Automatic storage area network
fabric design. In Proc. of the Conference on File and
Storage Technologies (FAST 2002), Monterey, CA,
January 2002.

[17] E.Y. Yang, J. Xu, and K.H. Bennett. Private
information retrieval in the presence of malicious
failures. In Proc. of the 26th Annual International
Computer Software and Applications Conference,
Oxford, England, August 2002.

APPENDIX

A. B+-TREE NODE SIZE CONFIGURATION
A critical aspect in the design of the B+-tree is the size

of the node. When B+-trees are used to build indexes in a
DBMS, the size of the I/O block typically defines the size
of the node, as the goal is to minimize the number of I/O
requests. For the B+-trees for this environment we have
greater flexibility and indeed the size of the node becomes
an important configuration parameter.

We build a simplified cost model that can be used to tune
the node size for a specific environment. The parameters of
the model are:

• Setup cost of a query that retrieves a single node given
its ID, KQ: there is a cost for every query execution,
due to the fact that the query has to be transferred from
the client to the server, the server has to understand it
and execute it. Since we are interested in the modeling
of accesses to the nodes of an encrypted B+-tree, we
assume that the cost is the same for all queries.

• Size of the node, sn: the size of the node depends on
the number f of key values appearing in the node and
on the size of keys sk and on the size of pointers sp.

• Cost Ct for the transmission and processing of a bit (we
assume the cost to be constant; this is a good approx-
imation for transmission costs and reasonable for the
processing costs associated with the retrieval of data
on the server and parsing on the client).

• The number N of tuples in R.

The above terms can be used to build a formula that es-
timates the cost to access one node:

KQ + Ct × (f × sk + (f + 1) × sp)

When the tree is used to search a value k among N ,
logf (N) tree nodes will be accessed; the following formula
estimates the cost required to access a tree leaf:

C = logf (N) × (KQ + Ct × (f × sk + (f + 1) × sp))

The optimal value for f will be one that minimizes the
above cost function. The application of analytical meth-
ods to the function (variable f is replaced by the canonical
analytical variable x) shows that the function can be also
represented by the simpler structure:

C =
α + βx

log x

Parameters α and β are both positive. The function is
continuous and, considering for x the interval 1 − ∞, it
diverges at x = 1 and it also diverges as x → ∞. The
identification of the minimum can be based on an analyt-
ical study of the function. In particular, we compute the
function derivative, obtaining:

C′ =
βx(log x − 1) − α

x log2 x

Function C′ presents a single zero in the interval (1−∞),
that corresponds to the minimum in the cost function C.
To identify the optimal x value in the domain of integers,
it is sufficient to compare the two values for C that derive
assigning to f the two integers obtained by rounding with
floor and ceiling the minimum obtained by the numerical
resolution. For instance, with 1,000,000 tuples, 0,01s query
setup cost, 4 ∗ 10−7 s/bit transmission cost, 30 bytes for a
key and 2 bytes for a pointer, we obtain the optimum at
f = 38.

