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ABSTRACT

The sharing of large amounts of data is greatly facilitated
by the adoption of cloud storage solutions. In many sce-
narios, this adoption could be hampered by possible con-
cerns about data conbdentiality, as cloud providers are not
trusted to know the content of the data they store. Espe-
cially when the data are organized in objects, the application
of an encryption layer is an interesting solution to this prob-
lem, because it olers strong conbdentiality guarantees with
a limited performance overhead. In a data sharing scenario,
the management of access privileges then requires an ade-
quate support for key derivation and for managing policy
evolution.

We present a solution that provides transparent support
for the encryption of objects stored on Swift. Our system
olers an e"cient management of the updates to the access
control policy, including revocation of authorizations from
some of the sharing users. We explore several alternatives
for the architecture, associated with distinct levels of trans-
parency for the applications, and integrate dilerent options
for the management of policy updates. Our implementa-
tion and experiments demonstrate the easy integration of
the approach with existing cloud storage solutions.
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1. INTRODUCTION

Cloud storage has already a central role in supporting the
sharing of data among users and organizations. The ap-
proach currently supported by most applications assumes
trust in the ability of the cloud provider to support data
conbdentiality. Such ability can leverage on encryption, pro-
viding a protection layer. The use of encryption to protect
the conbdentiality of the stored data olers clear benebts and
can be expected to become commonplace when using cloud
storage, as encryption for communication channels has be-
come in the past few years. To support this evolution, it
is crucial on one side to advance the support for the shar-
ing of encrypted data, and on the other side to facilitate
the integration of these services with existing cloud storage
architectures. Since data to be shared are stored in an en-
crypted format, it is necessary to design and implement key
management solutions that allow users authorized to access
a given content to get the encryption key that has been used
to protect that content. A delicate issue is associated with
the management of policy updates, especially for revocation
of access privileges. This is a critical aspect and current
systems oler limited support for it. Solutions enforcing ac-
cess revocation have then to be transferred to exiting cloud
storage systems. This transfer not only facilitates the adop-
tion of these solutions in real systems, but it also claripes
the issues that have to be faced for their concrete deploy-
ment, illustrates alternatives for their implementation that
have a signibcant impact on performance, and in the end
demonstrate the applicability of these techniques.

The work presented in this paper aims at the following
two goals. First we propose an investigation on how tech-
niques for sharing data using the services of a cloud provider
can support both static and dynamic authorization policies.
This analysis is done in the domain of the OpenStack Swift
system, arguably one of the most successful solutions for
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cloud storage. Second, we show that approaches for the e"-
cient management of policy updates can be integrated with
current cloud storage services. We propose dilerent options,
characterized by dilerent levels of transparency, for the in-
tegration of policy enforcement with existing applications.
The support for e"cient policy updates relies on the use of
Over-Encryption, and we consider three dilerent options for
its realization, considering distinct security assumptions and
performance. The implementation permits to verify the con-
crete performance exhibited by each option, olering guide-
lines for the selection of the option that a system may adopt,
depending on the specibc requirements of the application.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the reference platform (i.e.,
OpenStack Swift). Section 3 describes our EncSwift tool,
used to encrypt data at the Cloud Service Provider. Sec-
tion 4 illustrates two possible alternatives, App-aware and
Proxy architectures, for enforcing selective data sharing.
Section 5 considers the e"cient management of policy evo-
lution in EncSwift, describing the principles for the appli-
cation of Over-Encryption. Section 6 describes the main
design options that characterize the implementation of Enc-
Swift, discussing the motivations that led us to some specibc
design choices. Section 7 presents the experimental results
derived from the application of EncSwift alternatives. Sec-
tion 8 discusses related work. Finally, Section 9 concludes
the paper.

2. OPENSTACK SWIFT

OpenStack [14] is an open-source platform for creating
and managing cloud infrastructures, originally developed by
NASA and Rackspace. OpenStack operates with large pools
of computing, storage, and networking resources, all man-
aged through a dashboard that gives administrators control.

Swift, the object storage system used by OpenStack, plays
a central role in the architecture we propose. It allows users
to store data in the form of objects (in most cases equivalent
to bles) using RESTful APIs. Objects have a canonical name
containing three parts: tenant/ container/ object. The tenant
corresponds to a customer (for public clouds) or to a specibc
application domain (for private clouds). The container is a
loose equivalent of the directory of common ble systems.
The object is the stored data content and is included in a
container.

To store objects, Swift relies on clusters of standardized
servers (nodes). Depending on the kind of Swift processes
running on a Swift node, we can distinguish two kinds of
nodes: Proxy nodes and Storage nodes.

Proxy nodes are the public face of Swift, as they are the
only ones that communicate with external clients. As a re-
sult, they are the brst and last to handle an API request
to upload objects, modify metadata, and create containers.
All requests to and responses from Proxy nodes use standard
HTTP commands and response codes.

Storage nodes run one or moretenant/container/object
server processes, as well as a number of other services to
maintain data consistency. The tenant/container/object
server process handles requests regarding metadata for the
tenant, container, or object, respectively. This information
is stored by the account server process in SQLite databases
on disk. Furthermore, the object server process provides a
blob storage service that can store, retrieve, and delete ob-
jects on the Storage nodeOs drives.

When a valid request on a given object is sent to Swift,
the Proxy node will verify the request, determine the correct
Storage nodes responsible for the object (based on a hash of
the object name), and will send the request to these Storage
nodes concurrently. The Storage nodes will then return a
response to the Proxy node, that will in turn forward the
response to the requester.

To debne the users that are able to access the stored ob-
jects, Swift uses Access Control Lists (ACLS) organized in
two levels.

Tenant level ACL : set of users that can perform adminis-
trative level operations on the tenant (e.g., grant priv-
ileges to other users).

Container level ACL : set of users that can perform
read/ write/ listing actions on the container. Users who
are included in the read (write and listing, resp.) ACL
are able to download objects from the container (up-
load objects to the container, and listing the container
content, resp.).

We note that access control is currently not olered at the
level of single object, thus objects inherit the ACL of the
container they belong to. The evolution of Swift may lead
to the introduction of this support and our proposal can be
easily adapted to this evolution.

OpenStack also provides an identity (Keystone) and a se-
cret storage (Barbican) service. Keystone provides a cen-
tral directory of users mapped to the OpenStack services
they can access and acts as a common authentication sys-
tem across the cloud operating system. Barbican olers a
RESTful API designed for the secure storage, provisioning,
and management of secrets such as passwords, encryption
keys, and X.509 certibcates.

3. CLOUD STORAGE ENCRYPTION

We consider a scenario where users outsource their data
to an external cloud service provider using OpenStack Swift
and would like to selectively share such data with others.
Each user then stores her data through Swift objects, which
are organized in containers, and can grant other users access
to each of her containers (and hence to all the objects in it).
We assume the external cloud provider to be honest-but-
curious: it is trusted to correctly perform the operations
required by users, but it is not trusted for accessing the
content of the objects. We also assume correct and trusted
behaviors only by the client, meaning that we set the trust-
boundary at the client.

To enforce access control restrictions (i.e., enable only au-
thorized users to read the objects in each container), while
preserving conbdentiality of sensitive data from the cloud
provider, we adopt policy-based encryption [7]. According
to policy-based encryption, each object is encrypted with a
key that all and only the users authorized for it know (or
can derive).

In this paper, we illustrate the design of a component,
EncSwift, that implements access control restrictions over
data stored in Swift without the intervention of the data
owner as well as of the cloud provider. The core building
block of EncSwift is the Encryption Layer module, which is
in charge of managing encryption and decryption operations
of Swift objects to enforce access control.



3.1 Encryption Keys

The adoption of policy-based encryption for access con-
trol enforcement requires the debnition and management of
dilerent keys discussed in the following.

Data-Encryption-Key (DEK) . Each object stored in
Swift is encrypted using a symmetric encryption algo-
rithm (e.g., AES) and a secret DEK. Since data owners
grant/revoke privileges at the container granularity, all the
objects in the same container are initially encrypted with the
same DEK (dilerent objects can however be encrypted with
dilerent keys when enforcing policy updates, as discussed in
Section 5).

RSA Key Pair Each user in the system is associated
with an asymmetric key pair used for encryption. This key
pair is necessary to users for sharing objects with others,
by properly encrypting and exchanging the DEKs used to
encrypt the objects to be shared. Through her RSA key
pair, a user can directly or indirectly derive all the DEKs
used to encrypt the objects she is authorized to access.

Signature Key Pair Each user is also associated with
an asymmetric key pair for signing messages. Signatures
are used to guarantee the integrity of both objects and of
the keys (or information necessary for their derivation) ex-
changed between users.

Master Key (MK) . To facilitate key management at the
user side, each user can also have a personal symmetric en-
cryption key (see Section 4.3). The master key enables the
user to retrieve her RSA and signature key pairs.

Key-Encryption-Key (KEK) . KEKs enable users to re-
trieve, starting from their own secret keys, the DEKs used
to encrypt the objects they are authorized to access. Intu-
itively, a KEK is an encrypted DEK that only an authorized
user can decrypt (and hence gain access to the objects en-
crypted with such a DEK). KEKs can be generated in two
dilerent ways, as illustrated in the following.

¥ Symmetric KEK is obtained by encrypting a DEK
with the master key of a user. Since the master key
of a user is known only to the user herself, only the
user can create and use her own symmetric KEKs. To
provide users with the ability to verify the integrity
of symmetric KEKs, when generating a KEK the user
also applies a MAC function to its content, and stores
the result.

¥ Asymmetric KEK is obtained by encrypting a DEK
with the public RSA key of a user. An asymmetric
KEK can be created by any user knowing the corre-
sponding DEK, but it can be used only by one user for
key derivation: the one for which it has been produced.
To verify the identity of the user who created the KEK
and to assess the integrity of the key itself, asymmetric
KEKs must be signed. Then, the user generating the
KEK computes a hash of the KEK and signs it with
her own private signature key.

The availability of a collection of KEKs allows a user to
derive a large number of DEKs and access a wide set of
objects, starting from the knowledge of a single secret key
(i.e., the master key).
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Figure 1. An example of a conbguration with 4 users and 5
containers with dilerent ACLs
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Figure 2: Graph with DEK derivation from other DEKs

3.2 Key Derivation Structure

The enforcement of sharing restrictions is driven by the
debPnition of symmetric and asymmetric KEKs. To share
access to a container with others, the data owner only needs
to generate an asymmetric KEK for each of the users in the
container ACL, and a symmetric KEK for herself. These
KEKs will permit all the authorized users (and the con-
tainer owner) to retrieve the DEK of the container. Figure 1
graphically illustrates a scenario characterized by four users
(A, B, C, D), represented by white nodes, and bve contain-
ers (Container 1,...,Container 5), represented by colored
nodes. Edges in the graph represent KEKs: an edge be-
tween a user and a container is a KEK corresponding to the
encryption of the DEK of the container with the user public
key. For instance, the two edges between usersA and B
correspond to two KEKs that allow users A and B, respec-
tively, to obtain the DEK used for encrypting the objects in
Container 1.

To reduce the number of KEKs in the system (i.e., of edges
in Figure 1), we introduce KEKSs that encrypt a DEK with
another DEK. A DEK can be used to protect another DEK
only if the latter can be accessed by a superset of users than
the former. For instance, Figure 2 represents a set of KEKs
that enforce the same authorization policy as Figure 1. Here,
user A should pbrst obtain the DEK of Container 1 to be able
to retrieve the DEK of Container 2, which in turn will enable
her to obtain the DEK of Container 4.

3.3 Catalog Structure

Since the number of KEKs can be considerably high, they
cannot be stored at the user side. We then debne acatalog
for each user, storing all and only the KEKs that the user
needs to know for accessing the objects she is authorized
to read. The catalog is stored in a Swift container, specib-
cally created for this purpose. The containers storing users
catalogs are stored in a specibc tenant, used only for this
purpose. In the following, we will refer to containers storing
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Figure 3: App-aware architecture

users catalogs asmeta-container and to the corresponding
tenant as meta-tenant. Note that, while we have a meta-
container for each user, the meta-tenant is unique for the
system.

When creating a new user, the Encryption Layer will ini-
tialize a meta-container for the user catalog. When creating
a container, the data owner will create a symmetric KEK
for herself, and an asymmetric KEK for each of the users in
the ACL of the container. These KEKSs are inserted into the
catalog of the corresponding user.

Note that, to improve e"ciency in key derivation, a user
can replace an asymmetric KEK with the corresponding
symmetric counterpart in her catalog after the brst access.
This practice reduces the size of the KEK and makes future
derivations more e"cient.

4. CLIENT-ONLY ENCRYPTION

This section describes two alternative architectures to per-
form policy-based encryption that do not require any mod-
ibcation to server components. In both architectures the
encryption and decryption are performed at the client side.
The App-aware architecture (Section 4.1) requires adjust-
ments to the application that uses Swift, while the Proxy
architecture (Section 4.2) is totally transparent to the appli-
cation but requires an additional trusted proxy server, which
may cause delays. Section 4.3 illustrates an approach, which
can be integrated with both the App-aware and Proxy ar-
chitectures, enabling users to store RSA and signature key
pairs in the cloud.

4.1 App-aware Architecture

Many applications that use Swift as storage service, also
adopt the python-swiftclient library ! that provides several
high-level APIs for the communication between applica-
tions and Swift server. In the App-aware architecture, the
EncSwift component that is responsible for encrypting and
decrypting the resources is obtained by modifying of the
python-swiftclient library (see Section 6).

Figure 3 illustrates the App-aware architecture for policy-
based encryption as well as the steps followed by the client to
access a remote object. The process to access an (encrypted)
object operates as follows.

¥ Step 1 EncSwift Encryption Layer receives the userOs
request (step 1.8 and her private key (step 1.H.

Lhttps://github.com/openstack/python-swiftclient
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¥ Step 2 EncSwift retrieves, from the userOs catalog
stored in Swift, the KEK corresponding to the DEK
used to protect the object of interest, and decrypts it
to obtain such a DEK. Also, EncSwift retrieves the
encrypted object and decrypts it using the retrieved
DEK.

¥ Step 3 When the object has been decrypted by Enc-
Swift, it is forwarded to the application client.

Note that the process necessary to upload an object op-
erates in a similar way. Since the APIs now need also the
userOs keys to encrypt/decrypt the data, the API parame-
ters have been enriched. Hence, the application needs to be
modibed to invoke the enriched APIs.

To prove the applicability of EncSwift in existing appli-
cations, we implemented a library that has been directly
integrated into SwiftBrowser? (a simple web-app based on
the Django web framework that permits to access Swift re-
sources). The python-swiftclient library used by this appli-
cation has been replaced with our modibed version, to enrich
its functionality with the Encryption Layer protection. In
this way the user can interact with EncSwift using a browser.

During the login phase, the username, the tenant name,
and the password must be provided. Then a session is cre-
ated and managed by SwiftBrowser to store relevant data,
including the authorization token issued by Keystone (the
OpenStack identity service) that is used in place of the user-
name and password.

Once the user has logged into the system, the GUI shows
the list of containers that she is authorized to access. Using
the web interface, the user can upload and download objects,
access the object list of a specibc container, and manage the
container ACLs (i.e., grant/revoke authorizations).

The integration of EncSwift in SwiftBrowser preserves full
compatibility with SwiftBrowser, which does not use any
encryption layer.

4.2 Proxy Architecture

The App-aware architecture expects a modibcation of the
application client. An adaptation to this architecture that
provides enhanced transparency is the Proxy architecture,
illustrated in Figure 4. To avoid changing the API param-
eters, in the Proxy architecture the EncSwift Encryption
Layer reads a conbguration ble that debnes the path of the
userOs keys. Then, the user does not need to provide to the

2https://github.com/cschwede/django-swiftbrowser



Encryption Layer her own private key every time she wants
to retrieve an object from Swift. The steps followed by the
client to access an object are the same as the ones illus-
trated for the App-aware architecture (Figure 3), with the
dilerence that in the Proxy architecture the private key is
provided by the conbguration Ple rather than by the user
(step 1.H.

With this approach the application can be fully unaware
of the presence of the Encryption Layer. This permits to
plug the Encryption Layer in every application without any
modibcation, since the application can continue to use the
regular APIs.

Note that the Encryption Layer can also be deployed as
a trusted proxy server, which receives all the requests by
clients and forwards them (after encryption of the objects)
to the Swift storage service.

This architecture presents several advantages compared to
the App-aware architecture. First, the proxy server provid-
ing EncSwift functionality olers the same APIs provided by
Swift. This guarantees that all the existing libraries (e.g.,
JOSS Java OpenStack Storage [10]) and applications (e.g.,
Cyberduck [9]) can benebt from EncSwift functionality with-
out any modiPcation to their source code. Second, the trust
boundary can be moved by placing the proxy server (En-
cryption Layer) in dilerent locations. We then have a cen-
tralized proxy for an entire organization (i.e., all the users
that belong to the same trust boundary) by running it on
a trusted server (i.e., inside the organization network) or on
a trusted cloud provider, while the data can be outsourced
to a lower grade (and generally cheaper) cloud provider. In
this case the entire organization is the EncSwift user. The
proxy server can also be run directly by the client to keep
the trust boundary as close as possible to the user.

The disadvantage of this architecture is that it relies on
the presence of an additional trusted server running the En-
cryption Layer, which may introduce overheads and delays
into the system.

4.3 Key Storage in the Cloud

One of the clearest trends of the past few years has been
the adoption by users of mobile devices, replacing personal
computers as the reference platform for carrying out their
daily activities. The management of keys on these kind of
devices seems to be unfeasible. Hence, the user has to out-
source her own private and public keys, to store securely her
own data on the cloud.

OpenStack already olers a component, Barbican?, for the
secure storage of private information. Instead of locally
managing her RSA and signature encryption keys, the user
only has to store a symmetric Master Key (MK) used to
retrieve the private RSA and signature keys from Barbican.
The Master Key is then used to encrypt the RSA and sig-
nature keys of the user. Figure 5 illustrates the architecture
for key management, which can be integrated with both the
App-aware and the Proxy architectures changing the work-
ing of step 1in the object download process. To download
an object, the user then brst provides to EncSwift her own
Master Key (step 1.8). EncSwift uses such a key to de-
crypt the userOs private RSA key retrieved from Barbican
(step 1.H. Steps 2 and 3 then operate as illustrated for the
App-aware and for the Proxy architectures discussed above.

3https://wiki.openstack.org/wiki/Barbican
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Figure 5: Key storage in the cloud

5. POLICY EVOLUTION

Since we adopt policy-based encryption for access control
enforcement, a change in the ACL of a container requires
a modibcation in the encryption key used to protect the
objects it contains. Intuitively, the owner of the container
would need to download all the objects in the container, re-
encrypt them with a new key, and then re-upload the objects
to the Swift Storage Service. Over-Encryption [7] prevents
object re-encryption by requiring the server to add a fur-
ther layer of encryption. Intuitively, every object has a prst
layer of encryption ( Base Encryption Layer, BEL) imposed
by the data owner to enforce the initial access control policy
and to protect the conbdentiality of the objects content from
the server. A second layer of encryption (Surface Encryp-
tion Layer, SEL) is imposed by the server to enforce policy
updates. Only users knowing both the BEL and the SEL
encryption keys of an object can read its plaintext content.
When relying on Over-Encryption, grant and revoke operate
as follows.

¥ To grant a user access to the objects in a container,
the data owner needs to share with the user the (BEL
and possibly SEL) DEK used to encrypt the objects in
the container, by properly creating and storing a new
KEK in the userOs catalog.

¥ To revoke a user access to a container, the objects in
the container must be encrypted at the SEL level with
a new DEK that the revoked user does not know. The
data owner then generates a new SEL DEK and the
KEKs necessary to authorized users and to the server
to retrieve the new SEL DEK. The server re-encrypts
all the objects in the container with the new SEL DEK.

We note that, for e"ciency reasons, objects inserted into
a container after a policy change will be encrypted with a
BEL key that reRects the new ACL of the container. This
limits the adoption of SEL to only the objects directly in-
volved in a revoke operation. To this purpose, after a revoke
operation, the data owner generates a new (BEL) DEK for
the container, and inserts into the catalog of non-revoked
users the KEKs necessary to retrieve the new DEK.

Since grant operations are easy to manage and do not
require Over-Encryption, in the following we will focus on
revoke operations.

The implementation of Over-Encryption on Swift objects
requires to modify the Swift Storage Service and can oper-
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ate in three dilerent ways, which provide a dilerent trade-
o! between download/upload e"ciency and data protection.
The on-the-RBy mode applies Over-Encryption only on data
in transit between the client and the server. The on-resource
mode applies Over-Encryption only on data at rest, that is,
while objects are stored on server disks. The end-to-end
mode applies Over-Encryption on data at rest and in tran-
sit, combining the protection of the other two modes. In the
following, we describe these three Over-Encryption modes.

On-the-By mode. Over-Encryption is applied on re-
quested objects only when they are downloaded by a user.
Objects stored on the server disks are then not over-
encrypted, but they are just protected with the BEL key
applied by the data owner at upload time. When a user
wants to download an object protected by an old BEL DEK
(i.e., by a BEL DEK dilerent from the BEL DEK generated

by the most recent update of the policy), it is over-encrypted
to protect it while in transit from the server to the client.
Figure 6 illustrates the on-the-Ry Over-Encryption mode. In
this bgure, the SEL boundary represents when SEL encryp-
tion protects objects. If Over-Encryption is needed during a
download operation, the server retrieves the KEK necessary
to determine the proper SEL DEK to protect the requested
object against revoked users. In this mode, the client has to
manage a double decryption (at both BEL and SEL).

On-resource mode.  If the connection between the users
and the server is assumed to be secure while the storage
devices may be at risk, Over-Encryption can be directly ap-
plied on the objects stored on the server disks. This Over-
Encryption mode prevents security breaches, such as the
dump of data directly from the server disks and the theft
of the server disks themselves, performed by revoked users
who gain physical access to the storage server.
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Figure 8: End-to-end Over-Encryption mode

When the ACL of a container is changed and a user is
revoked, the server retrieves all the objects in the container,
retrieves the SEL DEK (if any) protecting them, and pos-
sibly decrypts the objects. It then uses the new SEL DEK
received from the owner to encrypt the objects in the con-
tainer and over-writes the old version of the encrypted ob-
jects on disks with the new one. When adopting this mode,
Over-Encryption guarantees that the objects are encrypted
at SEL only when stored at the server, as illustrated by the
dashed box in Figure 7. When a user accesses an object,
the server retrieves the SEL DEK protecting the object, de-
crypts it, and sends the object encrypted only at BEL to
the requesting user.

End-to-end mode. The end-to-end Over-Encryption
mode applies Over-Encryption on the objects stored on the
server disks and keeps the SEL encryption when objects are
transmitted to the client. It then combines the protection
guarantees o'ered by the on-the-By and on-resource modes.
In fact, SEL encryption protects objects against revoked
users on the server disks and in transit, until they reach
the user premises, as illustrated by the SEL boundary in
Figure 8.

Like for the on-resource mode, when a user is revoked ac-
cess to a container, the server re-encrypts at the SEL level
all the objects of the container, updating their encrypted
representation stored on disks. On the contrary, when a
user accesses an object, the server retrieves the object of in-
terest and returns it to the requesting user as it is stored on
disk (i.e., without removing SEL encryption layer). Like for
the on-the-By mode, the client has to manage a double de-
cryption (at both BEL and SEL) when downloading objects
from the server.

On-resource and end-to-end Over-Encryption modes have
the advantage, over the on-the-By mode, of enjoying a faster
response time when objects are downloaded, since they ap-
ply SEL encryption at revoke time. On the contrary, the on-
the-RBy mode introduces two additional operations at down-
load time: an encryption at the server side and a decryption
at the client side. The on-resource and end-to-end modes
however imply a slower policy update, since revoke oper-
ations require to over-encrypt the objects in the revoked
container. This could cause a large overhead when the size
of the revoked container is relevant. Instead, the overhead
of Over-Encryption is distributed among the download re-
quests in the on-the-By mode, since it is applied on single
requested objects. Therefore, as shown by the experimental
evaluation in Section 7, depending on ratio between the fre-



bel _key _id | Identiper of the current BEL DEK of
the container, used to encrypt new ob-
jects uploaded in the container

sel_key _id | Identiper of the SEL DEK of the con-

tainer; it is empty if Over-Encryption is
not necessary for the container

Figure 9: Metadata added to the container header

bel _key _id | Identiber of the BEL DEK used to en-
crypt the object
sel_key _id | Identiper of the SEL DEK used to

encrypt the object in storage; it is
empty if the object does not need Over-
Encryption or when using on-the-By
Over-Encryption mode

Figure 10: Metadata added to the object header

qguency of object downloads and of policy changes, one mode
may be more convenient than the other.

6. IMPLEMENTATION

This section describes the major design choices in the im-
plementation of EncSwift.

6.1 Container and Object Headers

To enforce the access control policy, each object and con-
tainer is associated with BEL and SEL DEKs. Each con-
tainer is associated with at most one SEL DEK. In fact,
every time a revoke operation implies Over-Encryption, a
SEL DEK is generated and is associated with the container.
SEL KEKs are updated according to policy changes and
are always available in the catalog of each authorized user.
Dilerently from SEL, each container may include objects
encrypted with dilerent BEL DEKs as they may have been
inserted into the container at dilerent times (and hence with
dilerent ACLs, as discussed in Section 5). A BEL DEK
therefore must be associated also with each object. How-
ever, each container is associated with only one current BEL
DEK, reRRecting the current ACL of the container.

Figures 9 and 10 show the metadata added to the con-
tainer and object headers, to allow users to retrieve the DEK
necessary to encrypt/decrypt each object in the system.

6.2 Encryption Layer APIs

Our application o'ers a new set of routines that should be
used in substitution of the o"cial ones provided by python-
swiftclient to take advantage of our policy-based encryption
functionality. When the Pnal user invokes one of these rou-
tines, the Encryption Layer in EncSwift, which is in charge
of the dialog with the dilerent modules of the OpenStack
environment, manages it. In the following, we refer our dis-
cussion to the Encryption Layer APIs of the on-the-By mode,
with the note that the on-resource and end-to-end modes
operate in a similar way.

Create User Method

To create a new user, the Encryption Layer invokes the Key-
stone standard create_user method and generates a new RSA
key pair and a new signature key pair, and stores them both
on the local storage and on Barbican (encrypting the RSA
and signature private keys with the userOs Master Key).
Then, the Encryption Layer communicates with Swift to
create the meta-container with the standard put_container
method. It then sets the ACL of the meta-container to
include the user only, using the traditional post container
method. Finally, the catalog is generated and stored in the
meta-container.

Put Container Method

To create a new container, the Encryption Layer gener-
ates a new BEL DEK and produces the corresponding set
of KEKs according to the ACL of the container, following
the approach illustrated in Section 3. Clearly, when a con-
tainer is created, no SEL is required since the container (and
its objects) are protected only with BEL encryption. The
container is then inserted into Swift using the traditional
put_container method, properly initializing the metadata in
the header of the container (Figure 9).

Put Object Method

To insert a new object into a container, the traditional
put_object method is modibed to guarantee that the object is
uploaded in encrypted (in contrast to plaintext) form, using
a key that enforces the container ACL. To this aim, the En-
cryption Layer retrieves, from the header of the container,
the identiper of the BEL DEK. If the user who invokes the
put object method is authorized for the container (i.e., she
appears in the ACL), the Encryption Layer asks Swift for
the userOs catalog, to retrieve the KEKs necessary to obtain
the BEL DEK associated with the container. The Encryp-
tion Layer then uses such a BEL DEK to encrypt the object
(Section 3) and puts it in the container, invoking the tradi-
tional put_object method.

Get Object Method

To retrieve an object from a container, it is Prst necessary
to retrieve the identibper of the BEL DEK and SEL DEK
used for the object. The Encryption Layer then asks Swift
to retrieve the stored object, using the traditional get object
method. The Swift server then veribes whether the object
has to be protected with SEL encryption. If the sel_key _id
of the container is empty or if the bel _key _id of the con-
tainer is the same as the bel _key _id of the object, Over-
Encryption is not necessary. In this case, either the policy
of the container has never been updated, or the container
has not been subject to revoke operations after the inser-
tion of the object. The object is then returned to the client.
At this point, two (or four) decryptions occur at the client
side: one to obtain the DEK (at BEL and, if necessary, also
at SEL) from the KEKs, and one to decrypt the object (at
BEL and, if necessary, also at SEL).

Post Container Method

To grant or revoke users access to a container, we use the
post_container method, which is used to change the meta-
information associated with a container and then also its
header.
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Figure 11: Comparison of the performance in serving a single request in the three Over-Encryption implementation modes

When a user invokes the post container method, the En-
cryption Layer brst checks if the post operation requests to
change the ACL (and whether it is a grant or a revoke op-
eration). If this is the case, the Encryption Layer retrieves
the container header, to obtain the ACL and the identi-
ber of the current BEL DEK and of the SEL DEK. When
a user is added to a container ACL, the Encryption Layer
computes the BEL KEKs and SEL KEKs necessary to the
granted user to access the BEL DEK and SEL DEK, re-
spectively. These KEKs are then stored in the catalog of
this user. When a user is removed from a container ACL,
Over-Encryption is required. Hence, the Encryption Layer
creates a new SEL DEK (possibly substituting the old one)
and updates the catalogs of the users in the current ACL
with the new KEKs (possibly removing the KEKs used to
obtain the old SEL DEK). In the on-resource and end-to-
end modes, the server also re-encrypts the objects with the
new SEL DEK.

6.3 Catalog Management Service

To guarantee the security and the consistency of users cat-
alogs, they can be updated only by users with administrative
privileges. Since also users who do not have these privileges
may need to update catalogs (i.e., when granting other users
access to their containers), we introduce an always-listening
Catalog Management Service This service provides an API
that users can invoke to update catalogs when a container
ACL is changed. The Catalog Management Service checks
if the request is valid and guarantees a correct update of all
the catalogs of the users involved in the grant/revoke oper-
ation. In this way, there is only one authorized entity that
can change the usersO catalogs.

When a user creates a container, she also invokes the Cat-
alog Management Service API, providing the KEKs that
must be inserted into the catalogs of the users in the con-
tainer ACL.

Since the version of Keystone that we used for our imple-
mentation requires administrative privileges to obtain the
user ID that corresponds to a username and vice versa, and
Swift ACLs include user IDs, our Catalog Management Ser-
vice also converts user IDs into usernames and vice versa.

6.4 Swift Middleware Pipeline

To apply Over-Encryption it is also necessary to modify
the server-side Swift service, which is based onWSGI, Web
Server Gateway Interface (a modular interface between the
web server and the web application) and on Paste Python
Framework. WSGI permits to debne a pipeline where sev-
eral components (the middleware) process and modify the
request before it reaches the main web server component
(e.g., the Proxy node), and the response they get from it. To
add Over-Encryption functionality to Swift, we introduced
two new components, the key_master and the encrypt com-
ponents, in the Proxy node pipeline. The key_master com-
ponent is in charge of retrieving the correct DEKSs, while the
encrypt component applies SEL encryption before return-
ing the object to the client. Including these components in
the Proxy node pipeline has the advantage of leveraging the
work done by the components preceding it in the pipeline
(e.g., authentication and request validation).

7. EXPERIMENTAL EVALUATION

A set of experiments were executed to compare the per-
formance of the Over-Encryption modes. The experiments
have been run for the client on a machine with Linux Ubuntu
16.04 LTS, Intel i7-4770K, 3.50 GHz, 4 cores. For the server,
we used an Amazon EC2 md4.large instance, with 4 CPUs
and 8 GB of RAM. The client was connected to the Internet
with a symmetric 100 Mbps connection.

To evaluate the proble of the modes we considered a va-
riety of scenarios with a dilerent ratio between the amount
of data accessed in the period between two policy updates
and the overall size of resources, represented by parameter
1. We can then assess the performance representing the
overall time required for the joint execution of a policy up-
date and the access to the over-encrypted data. The time
experimentally observed is well approximated by a function
f(!)= a+ !d, where ais the time spent by a post container
request that introduces an ACL change and d is the total
time necessary to download all the objects in the container.

Figure 11 illustrates the time required for the policy up-
date and object access for the three Over-Encryption modes
varying the container size, and considering three dilerent
values for parameter ! (0.5, 1, and 1.5). In our experiments
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Figure 12: Comparison on the performance for serving mul-
tiple requests in the three Over-Encryption implementation
modes

we considered 100 objects of uniform size in the container.
In all the considered conbgurations, the time naturally in-
creases with the size of containers in all the three Over-
Encryption modes. The component that dominates the exe-
cution time is the time required for the interaction between
client and server for small containers, and the data transfer
for large containers. Encryption and decryption operations
have a negligible impact.

As visible from the graphs in Figure 11, the end-to-end
mode presents the same trend as the on-resource mode, but
shifted up. This is due to the fact that the two modes require
the evaluation of exactly the same operations, with the only
dilerence that SEL encryption and decryption operate at
the client side in the end-to-end mode and at the server side
in the on-resource mode. Since the server has faster access
to storage, the on-resource mode is more e"cient.

The on-the-Ry and the on-resource modes show instead a
dilerent behavior and the relationship between their costs
changes varying!. When ! is small (as in Figure 11(a)
where ! = 0.5, meaning that half of the objects in the con-
tainer are accessed by the client after a policy update), the
intersection between the on-the-By and on-resource curves
is on the left (this break-even point is circled in the graphs).
This means that the two modes o'er the same performance
only for small containers. This is due to the fact that ACL
updates dominate the total cost and the on-resource mode
has to manage more operations. When each object in the
container is dowloaded once after the policy update (as in
Figure 11(b) where ! = 1), the intersection between the
two lines corresponds to a container size of about 9MB. The
on-the-By mode shows an advantage with larger containers
since, for each ACL change, it requires one key exchange
only, whereas the on-resource mode must change the en-
cryption keys of all the objects in the container. When !
is larger (as in Figure 11(c) where ! = 1.5) the break-even
point moves to the right, since get.object operations cause a
higher overhead in the on-the-Ry mode.

Figure 12 illustrates the total time necessary to each of the
three Over-Encryption modes to process a post.container
request that updates the policy over a 100MB container,

followed by a sequence of 25@et object requests, each for an
object of size 1MB. The end-to-end and on-resource modes
show an immediate overhead on the initial post.container
due to the re-encryption of the stored objects, while the on-
the-RBy mode spends a negligible amount of time to exchange
keys with other users. We note that get object requests are
slower in the on-the-Ry mode. The break-even point in this
scenario among all the considered Over-Encryption modes
is reached after about 130 get object requests. After such a
number of getobject requests, the end-to-end and the on-
resource modes become more e"cient than the on-the-Ry
mode. The experiments conPrm that the on-the-Ry mode
is preferable when the frequency of policy updates is great
compared to the frequency of access requests, whereas the
end-to-end and on-resource modes have an advantage when
policy updates are relatively rare compared to object access
requests. The on-resource mode shows a small performance
advantage compared to the end-to-end mode, which can be
preferred for the weaker trust assumptions it imposes on the
system.

8. RELATED WORK

Due to the rapid growth of cloud storage services, a signib-
cant amount of research has investigated the development of
encryption techniques to protect conbdentiality when mov-
ing data to the cloud [8, 13, 16]. The proposal developed
in this paper focuses on the Over-Encryption technique [3,
5, 6, 7], which has been adapted to operate in the Open-
Stack Swift scenario. In fact, the original work [7] targets a
generic provider (in contrast to the realization with a spe-
cibc technology like in this paper), with a generic interface
for the management of resources and keys. Also, the original
proposal assumes the presence of a single data owner. An
extension of the original proposal to a multi-owner scenario
has been presented in [6] and is based on a Di"e-Hellman
scheme. Again, it considers a generic provider. The im-
plementation of Over-Encryption in OpenStack Swift has
also been considered in [3], where approaches for the en-
forcement of revoke operations have been investigated. The
work in [3] is then complementary to the investigation in
this paper, which explores dilerent alternatives for the ar-
chitecture, associated with distinct levels of transparency
for the application, and integrate dilerent options for the
management of policy updates.

A recent solution relying on policy-based encryption for
access control enforcement, while e"ciently supporting re-
voke operations has been proposed in [4]. This approach
enforces revoke operations by applying a sequence of en-
cryption steps, which guarantee that even if a small portion
of a resource is not accessible, the entire resource cannot
be decrypted. Hence, re-encryption of a small portion of a
resource is su“cient to revoke a user access to the whole
resource. This paper, aiming at deployability with cur-
rent cloud technology and open source elorts, investigates
instead the realization of Over-Encryption as a protection
layer on a resource (object in OpenStack) as a whole.

Being a central piece of modern cloud infrastructures,
OpenStack Swift has recently been widely investigated.
In [2] some of the most critical Swift security aspects are
analyzed in detail. The framework in [1] proposes to en-
crypt objects in Swift, but do not address the problem of
e"ciently managing revoke operations.



Other proposals focused on the use of client-side encryp-
tion to protect data in the cloud (e.g., [11, 17]). Trustore [17]
debnes a ble system that is backed by Amazon S3 and en-
crypts bles before outsourcing them. This proposal, how-
ever, does not consider the use of ACLs for sharing resources
among users. CloudaSec[11] is a framework that handles
secure data sharing in the cloud. This approach enforces
revoke operations by limiting access to keys from revoked
users. A number of other proposals, such as ESPRESSO
[12], use instead server-side encryption to protect Odata at
restO (i.e., from attacks that are able to gain access to the
physical storage devices). These proposals do not consider
the use of ACLs to share access to resources and encrypt
data with keys that are never exposed to users.

9. CONCLUSIONS

We presented the realization of an encryption solution,
and of Over-Encryption for the management of policy up-
dates, in OpenStack Swift. Our investigation olers an anal-
ysis of dilerent implementation strategies for key manage-
ment, policy enforcement, and policy updates. Leveraging
the openness and modular architecture of OpenStack Swift,
our EncSwift tool provides a convenient approach for Rex-
ible data sharing with current cloud technology. The tool
has also been designed with extensibility in mind to enable
its adaptation and extension to possible evolutions of Open-
Stack, such as the ongoing elorts on Swift at-rest encryp-
tion [15]. Our proposal contributes then to the support of
elective and practical data protection solutions in real-world
cloud scenarios. Also, we believe that our analysis can be
of benebt to other researchers and practitioners interested
in developing e"cient data protection and sharing solutions
for the cloud.
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