© ACM,

(2007) . This is the author's version of the work.

It is posted here by permission of ACM for your personal use.

Not for redistribution. The definitive version was published in Proceedings of the Proceedings of the 2nd ACM

Symposium on Information, Computer and Communications Security, Singapore

http://doi.acm.org/10.1145/1229285.1229308

Trust Management Services in Relational Databases

Sabrina De Capitani di Vimercati
DTI - University of Milan
26013 Crema - Italy

decapita@dti.unimi.it

Sushil Jajodia Stefano Paraboschi
George Mason University DIGI - University of Bergamo
Fairfax, VA 22030-4444 24044 Dalmine - Italy

jajodia@gmu.edu parabosc@unibg.it

Pierangela Samarati
DTI - University of Milan
26013 Crema - Italy
samarati@dti.unimi.it

ABSTRACT

Trust management represents today a promising approach
for supporting access control in open environments. While
several approaches have been proposed for trust manage-
ment and significant steps have been made in this direction,
a major obstacle that still exists in the realization of the ben-
efits of this paradigm is represented by the lack of adequate
support in the DBMS.

In this paper, we present a design that can be used to imple-
ment trust management within current relational DBMSs.
We propose a trust model with a SQL syntax and illustrate
the main issues arising in the implementation of the model in
a relational DBMS. Specific attention is paid to the efficient
verification of a delegation path for certificates. This effort
permits a relatively inexpensive realization of the services of
an advanced trust management model within current rela-
tional DBMSs.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems—Relational
databases; H.2.7 [Database Management|: Database Ad-
ministration—=Security, integrity, and protection

General Terms
Security

Keywords

Trust, relational DBMS, credentials, access control

1. INTRODUCTION

Governments, large companies, and many other organiza-
tions are required to offer access to information contained
within their information systems to a multitude of users.
Users can be internal or external, and typically access the
data from their clients connected to a network. The size and
dynamics of the user community in this scenario set require-
ments that cannot be easily solved by traditional authoriza-

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ASIACCS’'07March 20-22, 2007, Singapore.

Copyright 2007 ACM 1-59593-574-6/07/000355.00

tion and access control solutions [14]. It is often impractical
to assume the creation and management of an account for
each and every user on each system: it is complex both
on the provider’s side (each account has to be managed,
privileges have to be explicitly assigned, and individual cre-
dentials have to be securely kept) and on the client side
(every one experiences problems in managing the accounts
and passwords she has) [17]. The case for governments and
public services is particularly significant: there is a strong
interest in allowing citizens to access the information that
each public organization keeps on them, while guaranteeing
simplicity to the user in managing accesses.

A partial solution to the user-side management of accounts
is represented by Single-Sign-On (SSO); the considerable in-
terest on this technology is a clear signal of the size of the
problem. At the same time SSO is clearly insufficient, be-
cause it deals only with the sharing of authentication within
a single organization.

As an alternative, trust management systems allow possi-
bly unknown parties to establish trust based on (certified)
information that each party can present to the counterpart
at the time of interaction. Servers supporting trust manage-
ment can then regulate access based on attributes (identities
or more general properties) that clients requesting access
present [2, 3, 5, 7, 17]. This is often the base on which flex-
ible authorizations can be defined, using certified attributes
as parameters in the specification of the resource or subject
of an authorization.

Some of the components on which trust management is
based, like the presence of a public-key infrastructure sup-
porting the distribution and verification of certificates, al-
ready are effective components of many important services,
as demonstrated by IPsec and SSL/TLS. Trust manage-
ment aims at extending their use from authentication on
network connections to flexible access control for structured
resources.

While several approaches have been proposed for trust man-
agement and significant steps have been made in this direc-
tion [1], a major obstacle that still exists in the realiza-
tion of the benefits of this paradigm is represented by the
lack of adequate support in the DBMS. Indeed, while cur-
rent DBMSs offer some support for certificates, they exploit
them only for the specific task of user authentication. The
major commercial DBMSs (specifically the last releases of

Sara
Line

Oracle Server and Microsoft SQL Server 2005) emphasize in
their documentation the possibility to manage certificates
and to allow users to establish database connections using
SSL/TLS or other PKI-based solutions. However, the infor-
mation appearing in certificates can at most be used to as-
sign a specific user id or role to the session activated with the
connection; no support is offered within the system to use
certified attributes to specify flexible authorizations. Post-
greSQL presents a similar profile: it is possible to combine
it with OpenSSL in order to introduce a robust and flexible
authentication service, but it is not possible to integrate this
mechanisms with DBMS authorizations.

The availability of a trust management service within the
DBMS would considerably increase the impact and applica-
bility of this access control paradigm. As a matter of fact,
DBMSs are not only the backbone of old-style business ap-
plications, but are responsible for the management of most
of the information that is accessed using a Web browser or
a Web service invocation. Lack of support of trust in the
DBMS would require the DBMS to rely on the overlying
application layer for enforcing trust management functions;
this is clearly in contrast with the DBMS long term evolu-
tion, which has continuously extended the DBMS with richer
functions for data access and management. Only by includ-
ing trust management functions in the DBMS itself the sys-
tem can give the database administrator (DBA) guarantees
of full control on the access control policies. The develop-
ment of a trust management component within a database
management system would offer considerable advantages in
terms of organization of access privileges (the authorization
policy is defined together with the data) and of robustness,
since there would be a strong guarantee that all accesses to
the data satisfy the protection requirements, independently
from the characteristics of the application environment. In
general, this design would satisfy a classical access control
principle that imposes to “keep the access control mecha-
nism close to the resource”.

Another demonstration of the need for an integration be-
tween trust management services and DBMSs derives from
the analysis of the architecture often used in applications,
where access control requirements in a scenario with many
users are managed by defining a set of ad-hoc mechanisms,
realized using the functionality of the procedural extension
of SQL. Such an approach satisfies the requirements only
partially and exhibits clear shortcomings in terms of perfor-
mance, usability, and integrity. The solution presented in
this paper instead designs a novel service integrated within
the database architecture. The advantages are greater per-
formance, greater usability, and increased robustness. In
particular, our solution has been developed with the follow-
ing requirements in mind.

e Seamless integration with the DBMS. DBMSs have an
integrated module for controlling access to resources.
It is important for trust management solutions not to
subvert such a control, but complement it. Also, it is
important to be able to express and represent trust in-
formation as part of the database schema, with an ad-
equate representation within the catalog of the DBMS.

e Abstractness and usability. One of the main charac-
teristics of a DBMS is the abstractness of its structure
and the declarativeness of the languages accessing it;
it is important that the trust management solution
maintains such characteristics.

o Fxpressiveness. The trust management solution
should be expressive to make it possible to specify in
a flexible way different protection requirements that
may need to be imposed on different data.

e Scalability. The trust management solution should en-
sure scalability with respect to the potentially high
number of users, resources, and policies that may need
to be managed in the context of large distributed open
systems.

The contribution of the paper is twofold. First, a trust man-
agement model for DBMSs is proposed. The model identifies
and adapts trust management concepts for their handling
within relational databases. It is accompanied by a SQL
syntax, which allows a seamless integration with existing
database services and demonstrates the high-level abstrac-
tion that a database designer can use to apply these con-
cepts. Second, the paper illustrates the basic techniques on
which a mechanism efficiently enforcing the model within a
modern relational engine can be built.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the base elements of a trust management
model for DBMSs and defines the framework within which
the model should operate. Section 3 proposes SQL state-
ments for representing the trust model. Section 4 presents
an algorithm for retrieving a valid delegation chain in sup-
port of a certificate presented by the client. Section 5 dis-
cusses integration with current relational database engines.
Section 6 discusses how to implement our proposal in Post-
greSQL. Section 7 describes related work. Finally, Section 8
presents our concluding remarks.

2. BASE ELEMENTS OF THE MODEL

The first step for introducing a model and related language
for defining and managing trust within the DBMS is the
identification of the concepts that should be captured for
providing trust management. It is also necessary to define
the framework within which the model should operate.

2.1 Base concepts

By analyzing the needs of a trust management system, and
considering the results of previous work in the area, we iden-
tify the following concepts that need to be captured.

Identity. It corresponds to a public key. The trust manage-
ment service is based on the services of asymmetric cryptog-
raphy. A basic assumption is that in offering access to infor-
mation resources the database does not consider if a client
really corresponds to a specified physical-world entity. In-
stead, the assumption is that every client interacting with
the database presents an identity and, as long as the client
demonstrates knowledge of the private key corresponding to
the identity, the client owns the identity.

Authority. It represents an identity (i.e., a public key) re-
sponsible for producing and signing certificates. The need
for capturing this concept comes from the fact that a party
accepts certificates signed by identities that it trusts (or
chains of certificates eventually leading to them) [8].

Certificate. It involves two identities: the issuer producing
the certificate, and the subject receiving it. The integrity
of the certificate is guaranteed by the presence of a crypto-
graphic signature created by the issuer. A certificate then
includes: the issuer’s public key, the subject’s public key, a
validity period, and a signature.

We distinguish two types of certificates: attribute certificates
and delegation certificates.*

e An attribute certificate binds attribute information
to the certificate subject. It contains a list of pairs
(attribute_name, attribute_value).

e A delegation certificate binds the trustworthiness of
pairs of authorities together. More precisely, an au-
thority may issue a delegation certificate asserting that
it trusts another authority (or authorities having cer-
tain attributes) for issuing certain attribute certifi-
cates. Delegation has been an important topic in re-
search on trust management. The model presented in
this paper considers a form of delegation where author-
ities can either give unrestricted delegation to other
authorities, or delegate other authorities only on spec-
ified attributes (e.g., a health agency can issue a certifi-
cate delegating physicians to certify a restricted set of
properties over patients). A delegation certificate con-
tains a list (possibly empty) of attribute_name terms,
representing the attributes on which the subject has
been delegated.

Policy. It defines the rules regulating access to resources,
based on the identities owned by the client and on the infor-
mation provided by the attribute and delegation certificates.
A major contribution of our solution is the capability to ex-
press powerful rules that complement and nicely integrate
with the native access control solution of the DBMS.

2.2 Framework assumptions

The goal of this work is to present an approach for al-
lowing the DBMS to understand and reason about trust
and regulate access to its data accordingly. We are not
concerned with the low-level services (certificate formats,
cryptographic protocols, and so on) required to create, ex-
change and verify certificates, or to delegate authority; the
model is built assuming the presence and correct behaviour
of traditional solutions developed for that and already avail-
able. Specifically, issues like certificate revocation, network
retrieval of certificates, credential negotiation, and robust

'Even if some certificate formats combine the two aspects in
a single certificate, it is possible to consider separately the
two types of certificates.

cryptography, are all assumed to be managed by an un-
derlying implementation of the certificate management ser-
vices [12, 13]. Reuse of existing implementations is par-
ticularly significant in this environment, where the large
number, variety and distribution of the players, combined
with the need for a consensus on the standards used, gives
a strong “first-mover advantage” to existing solutions.

Our proposal represents a convenient strategy to realize the
benefits of a richer trust management model without the
need to update the underlying infrastructure. This is par-
ticularly significant considering that currently X.509 is the
format typically used for certificates and it presents signifi-
cant limitations in its design (it allows a restricted form of
delegation and it focuses on the certification of real-world
identities, an intrinsically hard problem that the solution is
not able to solve completely). The integration with a richer
model like the one proposed in this work can significantly
increase the flexibility in the use of X.509 certificates.

3. SQL MODEL FOR TRUST MANAGE-
MENT

Our solution builds on an analysis of previous proposals,
which however are not directly applicable to the DBMS sce-
nario. Although existing approaches are expressive, they
are unmanageable in practice, because most of them are
based on expressive logics that cannot be put at work in
real DBMSs. Therefore, since all relational DBMSs sup-
port SQL, our trust management model is based on a SQL
syntax. In this way, we make trust management work in
DBMSs, while enjoying a high expressiveness and flexibil-
ity thanks to the coupling with SQL and existing DBMS
services.

We consider the different concepts identified in the previous
section and propose a possible SQL syntax for defining them.
The concept of identity corresponds to a public key and we
do not need to explicitly represent it in the model. Also,
delegation certificates are not explicitly represented in the
model, which is focused on the specification of policies based
on certified attributes. They are instead considered in the
definition of certified attributes, which can be asserted by a
trusted authority or by an authority delegated by it.

Each trust concept is represented by a SQL statement re-
sulting in the construction of a corresponding schema ob-
ject (see Section 5.1). Note that the introduction of SQL
statements for the representation of the model is a critical
success factor for a trust management solution in relational
DBMSs, otherwise DBAs would be required to express trust
using either external or low-level SQL constructs. The in-
troduction of specific SQL constructs for the management
of a novel security service is both compatible with the typi-
cal DBMS approach, where new constructs are always used
to represent novel functions (e.g., SQL:2003/Foundation has
more than 200 constructs), as well as the canonical security
design approach, which imposes to keep the policy and its
management clear and separated from the mechanism and
implementation details.

3.1 Authority

The concept of authority defines the identities that are
trusted to issue certificates. Its definition binds a name to
the public key of the authority. Considering the features
of current X.509 certificates, which use a predefined schema
to describe the Distinguished Name of authorities, we also
envision the introduction of a predefined set of attributes in
the authority description. The syntax of the SQL statement
is as follows.

create authority AuthorityName
[imported by FileName]l
[public_key = AttrValue
{, AttrName = AttrValue}]

This statement permits to define authority AuthorityName
either by importing its description from an existing certifi-
cate stored in a file (clause imported by) or by explicitly
introducing its attributes. The attributes follow the schema
specified by X.509 [9] and must include the authority public
key.

EXAMPLE 1. The following create authority statement
defines authority DOH (Department of Health) specifying its
X.509 attributes, namely: common name (CN), organization
(0), and country (C).

create authority DOH

public_key = ‘14:c9:ec....:4f:91:51’,
CN = ‘Department of Health’,

0 = ‘Government’,

c = ‘IT

A critical aspect for scalability is represented by the ability
of defining an authority based on its certified attributes, in-
stead of its identity. To this purpose, we propose the concept
of authority class and the following SQL statement.

create authorityclass AuthorityClassName
authoritative
AuthorityClassOrName [with [no] delegation]
{, AuthorityClassOrName [with [no] delegation]}
[except AuthorityName {, AuthorityName}]
(AttrName AttrDomain [check (Condition)]
{, AttrName AttrDomain [check (Condition)]}
[, check (Condition)])

This statement allows the definition of authority class Au-
thorityClassName. The syntax is rich and reuses many fea-
tures that SQL offers for the definition of tables. The de-
scription of the meaning and role of each term of the syntax
appears in the next subsection, because its features are iden-
tical to those used for trust tables. The main difference in
the management of authority classes compared with trust
tables (see next subsection) is that trust tables represent
properties obtained by certificates where the subject is the
identity interacting with the database, whereas authority
classes are defined based on attribute certificates where the
subject is an authority. The syntax is recursive, and an au-
thority class can be defined starting from another authority
class.

EXAMPLE 2. The following create authorityclass
statement defines the HealthGovAgency class as any
agency holding a certificate issued from the Department
of Health (DOH) proving that the agency is specialized in
healthcare and has paid the registration tax.

create authorityclass HealthGovAgency
authoritative DOH with delegation
(regtax varchar(10) check (regtax=‘paid’),
specialty varchar(15)
check (specialty=‘healthcare’))

3.2 Certified attributes (trust tables)

Traditional approaches to trust management (e.g., [4, 10,
13, 19]) usually do not assume a (pre)declaration of the at-
tributes that will be used in the policy, but simply use at-
tributes in the policy. However, since DBMS engines need a
structured organization of the data, the consideration of a
DBMS context requires the explicit identification, in terms
of names and types, of all the attributes that will be used in
the trust model. In our solution, the concept of trust table
responds to this need, as it represents the means by which
it is possible to consider the information provided through
certificates in rules and queries. The concept of trust table
captures several aspects:

e the certified attributes that characterize the identity
making a request to the database. The idea is that
a client presents a set of certificates and the informa-
tion extracted from them is stored in a relational table
that associates this information with the session that
manages the dialog with the client;

e the declaration of the authorities trusted for asserting
those attributes;

e the declaration of whether possible delegated authori-
ties are accepted (as well as a possible list of excluded
authorities);

e the specification of possible conditions on the value of
attributes that can be accepted; it allows filtering of
certificates based on the values of the attributes ap-
pearing in them.

The proposed syntax for the definition of a trust table is as
follows.

create trusttable TrustTableName
[authoritative
AuthorityClassOrName [with [no] delegation]
{, AuthorityClassOrName [with [no] delegation]}]
[except AuthorityName {, AuthorityName}]
(AttrName AttrDomain [check (Condition)]
{, AttrName AttrDomain [check (Condition)]}
[, check (Condition)])

The interpretation of the options is as follows. The Trust-
TableName represents a name associated with the set of
attributes extracted from certificates signed by given au-
thorities. The authoritative clause describes the authori-
ties that are trusted as signers of certificates producing the

specified set of attributes. If the authoritative clause is
missing, we assume that the DBMS uses a certificate veri-
fication service, independent from the proposed SQL trust
model, which identifies the trusted certificates in autonomy.
If with ([no]) delegation is specified, the module respon-
sible for verifying the integrity of the certificates is (not)
permitted to consider certificate chains. The except clause
allows the specification of exceptions. It can be used by the
DBA to exclude specific authorities that she does not want
to consider for the specific trust table (even if they have re-
ceived a delegation for the specified set of attributes). The
reason can be that the authority is not trusted by the DBA
or that a more specific trust table is used to manage certifi-
cates issued from that authority.

The check clause is a powerful mechanism that SQL offers
for the description of integrity constraints. The trust table
uses this mechanism to introduce constraints on the values
of the certificate attributes.

EXAMPLE 3. The following trust table Physicians speci-
fies properties defining the attributes characterizing medical
doctors. The check clause imposes the non nullity of the
license_number.

create trusttable Physicians

authoritative HealthGovAgency with delegation
except HealthSchoolAuth

(code char(9),

name varchar(25),

license_number int

check (license_number is not null),
specialty varchar(20)

3.3 Policy

A trust management policy regulates access to resources
based on the attributes stated by verified certificates. Sup-
porting a trust management policy requires then to provide
the DBMSs with means to exploit certified attributes to reg-
ulate access. In this section, we show how certified attributes
are used by the DBMS to regulate role activation and user
identifier enabling. This provides a dynamic component for
managing subjects, whose access is then regulated by classi-
cal authorizations (for roles and/or users) within the DBMS
itself. We also illustrate how trust management can be used
to enrich access control with context-dependent restrictions.

3.3.1 Trust policy

The trust policy represents the mechanism by which data
access privileges are assigned to the clients, based on the
information presents in the trust table. The trust policy
allows the system to associate with a client a given role,
subject to the satisfaction of a condition that can refer to
the trust table attributes. The condition is expressed in the
SQL syntax for query predicates, and uses the SQL dot no-
tation to refer to trust table attributes (preceding them with
the name of the trust table). The following SQL statement
defines a trust policy.

create trustpolicy [PolicyName]
[for Role [autoactivate] | Userid]
where Condition

Here, Condition is any predicate that can appear in the
where clause of a SQL query and can refer to the trust table
using its name and specifying the attributes contained in it.
The Role is a set of privileges and it has to be a previously
defined SQL role (the concept of role has been introduced in
the SQL standard by SQL:1999 [6]). A role can be dynami-
cally activated by all users authorized for it. The semantics
of the statement is therefore that all users presenting certifi-
cates satisfying the condition are authorized to activate the
specified role or are enabled the user id. The role activation
is automatic if the autoactivate option is specified. If the
for clause is omitted, the user satisfying the condition is
assigned the privileges of the predefined identifier PUBLIC,
which everybody is allowed to activate.

Since trust management systems are typically used to en-
force attribute-based access control (which departs from the
classical mechanism based on user identifiers) this state-
ment would be typically used to establish role activation.
The reason for considering trust policy statements referring
to user identifiers is to support authentication certificates,
that is, certificates stating a correspondence between a trust
management identity and a user identifier internal to the
database.?

EXAMPLE 4. The following policy activates role Cardiol-
ogist for each user presenting a certificate from a health gov-
ernment agency (see Example 3) proving that the user is a
doctor specialized in cardiology.

create trustpolicy
for Cardiologist autoactivate
where Physicians.specialty = ‘Cardiology’

3.3.2 Support for context-based restrictions
SQL provides some support for content-based access con-
trol, via the use of views, but it does not provide support
for context-based access control, where access to data (or to
views over them) may depend on properties of the user (or
its session) such as time, the machine from which the user
connected, and so on. Our trust management solution can
be exploited to provide such a functionality. Also, coupled
with the view mechanism it can provide a means to spec-
ify accesses where each user has a particular view over the
data, depending on its certified properties. This technique
is simple, yet effective, and powerful. The specification of
the certificate attributes follows an approach similar to the
one used for the definition of trust policy conditions, thus
referencing certificate attributes using a dot notation. A
small difference is that the trust tables are assumed to be
directly available in the definition of the trust policy con-
dition, whereas they have to be explicitly cited in the from
clause of the query defining the view.

2When the client satisfies the conditions of many trust poli-
cies, she would receive a grant to activate multiple roles,
and if the trust policies specify the autoactivate option,
they will be all activated at the same time. The concurrent
activation of multiple privileges does not create a critical
situation, thanks to the absence of negative authorizations
in SQL that permits an immediate combination of different
authorization profiles based on set union.

SATISFIES (cert, TT)
If cert.issuer € TT.Roots then return valid(cert.id) /* the issuer is a root auth. for TT */

Roots := {auth € TT.Roots | TT.Roots.del_flag=true} /* Determine authorities of domain TT which can delegate */
If Roots = () then return(false) /* No delegation allowed */

/* Phase 1: graph construction*/

For dc € Deleg_Certs do /* Construct labeled graph G=(V,E) of delegation certificates */
V := V U {dc.subject, dc.issuer}
E := E U {(dc.subject, dc.issuer)}
A({dc.subject, dc.issuer)).Attributes := dc. Attributes
A({dc.subject, dc.issuer)).cost := dc.cost
A({dc.subject, dc.issuer)).id := dc.id

/* Phase 2: find supporting chains */

Tocheck = cert.Attributes N TT.Attributes /*Initialize set of attributes for which chains have to be found */
For a € Tocheck do /* Initialize Cost and Pred of each node n */

For n € V do
Costy, a] i= 00 /* lowest cost of path for a ending in node n */
Predn[a] := null /* predecessor of n in such a path */

MAKENULL(Queue) /* Create priority queue of edges with information of attributes and cost of path ending with them */
For e € {(77,17 TL2> er | n1=cert.issuer} do /* Add to Queue all edges outgoing from cert.issuer */
p_attrs := A(e).Attributes
p-cost := A(e).cost
INSERT([n1,n2,p-attrs,p_cost], Queue)
MAKENULL(Vem’fy-Queue) /* Create priority queue describing the root nodes of the solution chains */
While Tocheck # 0 N Queue #* () /* Extract from Queue the element with minimum path cost */
[from,to,p_attrs,p_cost] := EXTRACT_MIN, o5t (Queue)
A := () /* Keeps track of attributes verified along the chain */
For a € p_attrs N Tocheck /* For each attribute still to be verified that belongs to the extracted edge (from,to),
If Costto[a] > p_cost then if the cost of the path expressed by the element is smaller than the one of current path,
Costio|a] := p_cost update solution to include the extracted edge */
Predio|a) := from
A=AUa
If A # 0 then
If to € Roots then
Tocheck := Tocheck — A
INSERT([to,A,p_cost], Verify-Queue)
else For ¢ € {{n1,n2) € E | ni=to} do
p-attrs :== A(e). Attributes N A N Tocheck
If p_attrs # () then
p_cost := p_cost + A(e).cost
INSERT([to,n2,p-attrs,p_cost], Queue)
If Tocheck +# 0 then return(false) /* No chain covering all attributes in Tocheck is found */

/* Phase 3: verify chains */

Tocheck = cert.Attributes N TT.Attributes /* Initialize attributes to check for verification */
While Tocheck # 0 N Verify_Queue # 0
A := Tocheck /* Initialize attributes covered by a verified path */
[to,p-attrs,p_cost] := EXTRACT_-MAXy,_cost (Verify-Queue)
If p_attrsN Tocheck # () then
Let a be any attribute in p_attrs N Tocheck
Repeat /* go back in the chain for a from to to cert.issuer */
from := Predo[a]
If valid(\((from,to)).id) then
A = A N X({from,to)). Attributes
to := from
else /* certificate id is not valid */
to := cert.issuer /* set condition for termination */
A := () /* no attribute verified along the chain */
Until to = cert.issuer
Tocheck := Tocheck — A /* remove verified attributes from Tocheck */
If Tocheck # () then return(false) /* Not all attributes verified */
return(true)

Figure 1: Chain verification algorithm

EXAMPLE 5. The following view grants each physician
access to the data of her patients (having the physician
recorded as their primary doctor).

create view PatientView as
select Patients.x*
from Patients, Physicians
where Physicians.code = Patients.doctor_code

4. DELEGATION CHAIN VERIFICATION

One of the most critical components of every trust man-
agement proposal is the design of the algorithm responsible
for the identification of the delegation chains. Many models
have been proposed for the management of this important
step, both in centralized and distributed contexts, consid-
ering several alternative models for the representation of
delegation (e.g., [12]). Unfortunately, all the models that
offer the representation of a flexible delegation mechanism
use algorithms for the verification of delegation chains that
are extremely difficult to apply in the database context, due
to their computational cost. It is indeed hard to convince
a database implementor to integrate within the relational
engine a logic model checker, for the verification of certifi-
cates presented by a client. We instead show that our model
permits the application of an algorithm that is able to iden-
tify, with an acceptable computational effort, if a set of cer-
tificates produces a delegation path for a set of attributes
appearing in a certificate. Also, with an approach similar
to the one used by DBMS query optimizers, the algorithm
can apply a cost model that estimates the computational ef-
fort required for the verification of delegation chains. In this
way, the algorithm is also able to identify, for each attribute
in the certificate, the path in the delegation graph that re-
quires the minimal cost for its verification. The algorithm
is therefore a crucial component of the proposed approach
since it shows that the complexity of our delegation mecha-
nism remains manageable by a DBMS.

We assume that the system has knowledge of all the del-
egation certificates Deleg_Certs needed for the verification.
Each delegation can be either unrestricted or applicable only
to a subset of attributes. We also assume that each dele-
gation certificate is associated with a cost representing an
estimate of the computational effort required for the certifi-
cate verification. The reason for capturing cost information
is that cryptographic functions are computationally expen-
sive and it is therefore important to minimize their use. The
cost information can be used to model the lower cost of us-
ing certificates cached as valid in prior verification as well as
the different higher costs of retrieving certificates from re-
mote directories. Finally, we assume that the cryptographic
check over certificates is carried out by invoking an external
function, called valid.

4.1 Algorithm

We consider a client that presents a certificate cert. For
each trust table TT with a structure that is compatible
with cert, the algorithm illustrated in Figure 1 determines
whether cert satisfies T'T either directly or via a delegation
chain, returning true or false accordingly.

The algorithm starts by checking if the issuer of the certifi-
cate (cert.issuer) belongs to the set of root authorities of

cert.issuer

root authority root authority root authority

Figure 2: An example of delegation graph

TT. If this is the case, the algorithm terminates right away
returning the outcome of function valid over the certificate.
Otherwise (the issuer is not a root authority) the algorithm
proceeds to determine whether the certificate is supported
by a chain of delegation certificates in Deleg_Certs. If dele-
gation is not allowed (the set of root authorities for which
delegation is allowed is empty), the algorithm terminates
returning false; otherwise, it proceeds to retrieve a possible
delegation chain.

The process of determining a delegation chain can be seen as
composed of three parts: first the algorithm defines a graph
representing all delegation certificates in Deleg_Certs, then
it finds support chains for the attributes involved, and finally
it checks the validity of the certificates in the chains.

Phase 1: graph constructionthe delegation graph G
representing all the delegation certificates Deleg_Certs has a
node for every issuer and every subject of certificates, and
an edge for each certificate dc, going from the subject of dc
to its issuer. The edge is labeled (via a function \) with a
triple reporting the (Attributes) in the certificate, the cost
for checking its validity, and its identifier. As an exam-
ple, suppose that certificate cert contains three attributes,
namely, a, b, ¢, and that the issuer of this certificate is au-
thority A7. Figure 2 illustrates an example of delegation
graph with three root authorities (A1, A2, and As) and seven
delegate certificates (one for each edge in the graph) involv-
ing authorities A4, As, As, and A7. Each edge is associated
with a label that specifies the delegated attributes and the
cost, respectively.®

Phase 2: find supporting chainginding a support
chain for an attribute a means finding a path in the graph
starting from the issuer of cert and ending in one of the root
authorities for TT (set Roots) such that the set of attributes
of all the edges in the path includes a. The cost of a sup-
port chain is defined as the sum of the costs of the edges
belonging to the chain; the shortest chain for an attribute
is the chain with minimum cost that exists for it.

3For the sake of simplicity, we omit the identifiers associated
with the delegation certificates corresponding to the edges
of the graph.

The process for finding supporting chains is performed via a
Dijkstra-like process, with a while cycle that iterates until
either a chain has been retrieved for all attributes (Tocheck
is empty) or there are no more edges to examine (Queue is
empty). When a path (chain) ending in a root authority is
found, Verify_Queue is updated accordingly. Verify_Queue
keeps track of the root authorities reached by a support
chain for some attributes. At the end of the while cycle, if
Tocheck is not empty, then no chain has been found for some
attributes and the algorithm terminates returning false.
Otherwise, the algorithm proceeds verifying the chains re-
trieved. The algorithm makes use of classical Dijkstra-like
structures to maintain information on the paths being found.

Phase 3: verify chainsThe chain verification process
starts by initializing variable Tocheck to the set of attributes
to be verified. Then, it processes chains to be verified
(Verify-Queue) in decreasing order of cost. For each chain,
the certificates corresponding to the edges are checked via
a call to function valid and if the chain is correctly ver-
ified, the attributes certified by it removed from those to
be checked. The process (controlled by the while cycle)
continues until there are no more attributes to be verified
(Tocheck is empty) or there are no more chains to process
(Verify-Queue is empty). In this latter case, not all at-
tributes have been verified and the algorithm terminates re-
turning false; otherwise it returns true.

As an example, for the delegation graph in Figure 2, our
algorithm determines two verification chains:{Az7, A4, A1) for
attribute a and (A7, Ag, As, As) for attributes {b,c}.

Note that the reason why the elements in Verify_Queue are
processed in decreasing order of cost is to minimize the num-
ber of chains to be verified. For instance, with respect to
the delegation graph in Figure 2, our algorithm verifies both
attribute b and attribute ¢ with path (A7, Ag, As, As) with
cost 9, instead of considering two paths: (A7, As) for at-
tribute b with cost 4 and (A7, Ag, As, A3) for attribute ¢
with cost 9.

In summary, the algorithm is able to efficiently identify (with
a computational effort that grows almost linearly with the
number of edges in the graph multiplied by the number of
attribute labels) the presence of a delegation chain support-
ing the certificate in the graph. We observe that the algo-
rithm has a tuple oriented structure: at each iteration, in
the search for the minimum cost path, a single edge is con-
sidered. This is the reason while we have chosen not to use
SQL instructions.

5. INTEGRATION WITHIN A DBMS

There are few principles that have to be followed in the
integration within a current DBMS of the trust manage-
ment services we described. First, the implementation in
real systems of these services can be successful only if it is
focused on a few components, otherwise, it could introduce
many side effects, in terms of functionality or performance,
which would create problems in current database applica-
tions. Second, the implementation has to require a mod-
est coding effort; apart from the increase in costs that can
make this extension too expensive in the eye of the DBMS
producer, it would be considerably more difficult to have

a guarantee on the robustness in terms of security. Third,
there is a need for a good integration with current SQL
constructs, in order to minimize the effort required to the
database designer in the modelling of application require-
ments for access control. Our proposal has been designed
taking into account all these principles ensuring seamless
integration with existing DBMSs.

One key aspect deserving mention in the implementation of
our solution concerns role activation. The SQL standard,
since SQL:1999, offers supports for roles; however the SQL
model with roles binds roles to user identities and therefore
must be adapted to support role activation (i.e., granting of
privileges) on the basis of certified attributes. We solve this
problem by using sessions (instead of user ids) as target of
grant statements triggered by the trust policy to enable role
activation (see Section 3.3.1).

5.1 Translation of the SQL Constructs

The SQL statements that we presented for the definition of
authorities, trust tables, and trust policies facilitate the in-
tegration of these aspects within relational databases. We
describe in more details how each SQL trust statement can
be translated into traditional SQL structures. The table in
the appendix summarizes the discussion. The goal is not to
suggest a strategy for DBAs to represent trust directly in
the DBMS (a higher level representation has to be used to
model an access policy), but to demonstrate the compatibil-
ity of our proposal with the internal architecture of current
DBMSs.

The description of authorities within the schema requires
to introduce a table in the database catalog, which we call
Authority, which has to present two non-null attributes,
name and public_key, storing the name and the public key
of each authority, respectively. The specification of a create
authority statement therefore corresponds to the insertion
of a tuple in the Authority table, where the authority name
and the public key are those indicated in the statement.

Statements create authorityclass and create
trusttable produce a more extensive impact on the
catalog. Each authority class produces a table correspond-
ing to the authority class description. Analogously, each
trust table produces a table to contain the attribute values
obtained from client certificates. Depending on the feature
set of the DBMS, these tables can be managed as global
temporary tables.* Global temporary tables are described
in the SQL standard [6] and represent tables that are part
of the database schema, but that differ from base tables
because their content cannot be shared between different
sessions; a session can then use a global temporary table
to store information that is then needed within the same
session and that must not be shared with other sessions.
The advantage of global temporary tables is typically
greater performance, due to the fact that locks, and in
general concurrency control mechanisms, are not used

4For database servers that do not support global temporary
tables, it is necessary to simulate their services using in the
schema of the trust table an additional attribute, the session
identifier session_id. The goal of this attribute is to asso-
ciate each certificate with the session on which it has been
presented.

to access the table; an additional benefit is that a rigid
separation of the information pertaining to distinct sessions
is automatically supported, with automatic removal of the
information at the closure of the session. Both the create
authorityclass statement and the create trusttable
statement correspond to a create global temporary
table statement, where the name of the global temporary
table is the name of the authority class and the name
of the trust table, respectively, and the schema is the
list of attributes and constraints defined by the create
authorityclass and create trusttable statements.

The management of the optional clauses on trusted author-
ities, delegation, and exceptions forces the introduction of
additional tables, which have an important role in the eval-
uation, database-side, of the validity of the certificates pre-
sented by the client. More precisely, tables AuthorityClass
and AuthorityTT are needed to store the list of author-
ities trusted (clause authoritative) for asserting that a
given party has given attributes and for producing certifi-
cates that can contain the list of attributes defined in the
trust table, respectively. These tables have three attributes,
name, authority, and delegation_flag, storing the name of
the authority class or trust table, the name of the authority,
and whether chains of delegated authorities with authority
as a starting point are acceptable (delegation_flag is set to
true) or not (delegation_flag is set to false). Analogously,
tables NotAuthorityClass and NotAuthorityTT are needed
to store the list of authorities that are not trusted (clause
except) in the specific authority class and trust table, re-
spectively. These tables have two attributes, name and au-
thority, storing the name of the authority class or trust table
and the name of the authority, respectively.

Each create authorityclass statement and each create
trusttable statement are therefore translated into one or
more insert statements that have to be executed on these
tables: one insert statement on tables AuthorityClass
and AuthorityTT for each authority specified in the
authoritative clause and one insert statement on tables
NotAuthorityClass and NotAuthorityTT for each authority
specified in the except clause, as reported in the appendix.

The create trustpolicy statement is represented as a trig-
ger whose condition is the condition specified in the policy.
The trigger event reacts to the insertion of a tuple in the
trust table referred in the condition. The trigger action
grants the session a privilege to activate the role (and acti-
vates it automatically if the autoactivate clause is speci-
fied).

6. PROTOTYPE IMPLEMENTATION

To demonstrate the realizability within current DBMSs of
the proposed trust management model, a related project is
currently producing an implementation in the PostgreSQL
system. PostgreSQL is a well-known open-source DBMS,
already chosen as a testbed for the implementation of novel
database technologies by many other research initiatives.

The first design issue was the choice of the component re-
sponsible for the cryptographic functions used for the ver-
ification of certificates. The OpenSSL system has been se-
lected, which is one of the most used implementations of the

SSL protocol. The PostgreSQL distribution already offers
the possibility to integrate the OpenSSL system, but it only
uses it for the realization of a dialog between a client and
the PostgreSQL server using an SSL connection. Since Post-
greSQL does not support global temporary tables®, trust
tables have been managed by regular tables that explicitly
represent the session identifier together with the attributes
obtained by certificates. The model presented in the pa-
per restricts the use of trust table attributes to two situ-
ations: the definition of trust policies and the definition of
views. The management of create trustpolicy statements
is based on the use of triggers. The management of the
create view statement follows the same approach used in
PostgreSQL for the management of views, which uses rules.
PostgreSQL rules are rewriting rules that capture references
to views and replace each occurrence of the view in a SQL
statement with the corresponding query. PostgreSQL rules
can be immediately adapted to the representation of views
using certificate attributes. Starting from a view definition,
a rule is produced that replaces the view occurrence with
the query that defined the view, extended with the pred-
icate that restricts the evaluation of certificate attributes
only to the tuples of the trust table that refer to the session
in which the SQL command is executed.

EXAMPLE 6. Consider the following view, which uses an
attribute of trust table Physicians.

create view PatientView as
select Patients.x*
from Patients, Physicians
where Physicians.code = Patients.doctor_code

The system produces the following PostgreSQL rule.

create rule PatietViewsSelect as
on select to PatientView
do
select Patients.x*
from Patients, Physicians
where Physicians.code = Patients.doctor_code
and Physicians.SessionId = session_identifier()

7. RELATED WORK

Trust management has received considerable interest in the
research community. Much of this research, however, focuses
on the formalization and analysis of the expressive power of
authorization systems, without addressing the practical de-
tails and strategies for integrating and implementing trust
management in the DBMS. In contrast, our approach can
be easily incorporated into a DBMS, increasing the expres-
siveness of the access control model in terms of protection
requirements that can be supported.

The term trust management was first introduced in [3] by
Blaze, Feigenbaum, and Lacy, where the authors presented

®Note that temporary tables in PostgreSQL are only local,
that is, they have to be created with a create table state-
ment within a session, and are dropped at the end of the
session.

a trust management system, called PolicyMaker, where au-
thorizations are associated with keys rather than with users’
identities. An application sends to the execution environ-
ment a request for actions, a policy, and a set of credentials
and the execution environment returns an answer to the
question of whether the credentials prove that the request
complies with the policy. The KeyNote system [2], the suc-
cessor of PolicyMaker, refines the idea of PolicyMaker into
a more practical system. REFEREE (Rule-controlled Envi-
ronment For Evaluation of Rules, and Everything Else) [5] is
a trust management system for Web applications. Like Poli-
cyMaker, it supports full programmability of assertions (i.e.,
policies and credentials). While these approaches provide an
interesting framework for reasoning about trust between un-
known parties, the flexibility of the delegation mechanism is
difficult to integrate with a DBMS, and suggests an access
control model which strictly merges authentication and pol-
icy evaluation, in a way that is difficult to integrate with
database access control.

Other approaches use digital certificates to establish prop-
erties of their holder, delegation and revocation of creden-
tials, and evaluation of credential chains [8, 12, 15]. In [12]
the authors present an algorithm for discovering credential
chains expressed using a role-based trust management lan-
guage, called RTy. Wang et. al [15] propose a framework
that models an attribute-based access control system using
logic programming with set constraints of a computable set
theory. The Simple Public Key Infrastructure (SPKI) 2.0 [§]
is a digital-certificate schema where SPKI certificates can be
seen as tuples that can bind names to keys, names to priv-
ileges, and privileges to keys. All these proposals permit
a powerful representation of privileges based on the infor-
mation presented in certificates, but none of them is able
to offer guarantees on the computational effort required for
certificate verification.

X.509 [9] focused on the definition of a binding between keys
and names, and X.509 v.3 certificates extended this binding
to general attributes. X.509 is currently the most successful
solution, but its delegation model and certificate structure
are quite rigid. The model proposed in this paper permits to
exploit the existing X.509 infrastructure for the realization
of flexible policies.

Other complementary approaches (e.g., [4, 10, 11, 13, 16,
17, 18, 19]) propose solutions for specifying and enforcing
access control policies based on certified attributes. These
proposals focus in particular on the assumption that parties
may be unknown a-priori and therefore propose approaches
and strategies for parties to communicate to each other their
policies as well as releasing their certificates, possibly under-
taking a multi-step negotiation process. In this paper, we
have assumed the client to present all certificates needed
for an access at the request time. This does not rule out
compatibility with the different proposals supporting trust
negotiation. Our assumption is essentially that the negotia-
tion is completed before the trust management service starts
the verification process.

8. CONCLUSIONS

Even if trust management mechanisms have been proposed
a few years ago, their adoption has until now been limited.

This is mostly due to the obstacles arising in the implemen-
tation of a working infrastructure for the management and
exchange of certificates, as testified by the time and effort
spent for the realization of the current infrastructure based
on X.509 certificates. Part of the responsibility can also be
assigned to the absence of a clear strategy for the integration
of these services with database servers, which today manage
most of the information for which it is important to define a
rich and flexible access control model. Many trust manage-
ment proposals present mechanisms that are quite powerful,
but that are difficult to integrate with current DBMSs. In-
deed, most previous proposals had as main aim the increase
in expressive power, in order to represent evermore complex
and sophisticated scenarios.

Our approach has set as the primary requirement its com-
patibility with consolidated DBMS practices. The strict in-
tegration with the full set of current DBMS services provides
to our model a considerable expressive power. Exploiting
the integration of the policy with the active components
(triggers, procedures, constraints, roles, transactions) and
rich storage services offered by SQL, we were able to ade-
quately represent all the scenarios that we analyzed. The so-
lution presented in this paper is designed to be immediately
implemented by DBMS producers and used by DBAs. We
believe that our solution represents a good trade off between
functionality and applicability. Indeed, while not enjoying
the complete functionality of trust management approaches,
it captures their essential features and functions thus en-
abling the use of trust management concepts in practice.

9. ACKNOWLEDGMENTS

This work was supported in part by the European Union
within the PRIME Project in the FP6/IST Programme un-
der contract IST-2002-507591.

10. REFERENCES

[1] C. Ardagna, E. Damiani, S. De Capitani di Vimercati,
S. Foresti, and P. Samarati. Trust management. In
Security, Privacy and Trust in Modern Data
Management. Springer, 2006.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The KeyNote Trust Management
System (Version 2), internet rfc 2704 edition, 1999.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proc. of the 17th Symposium on
Security and Privacy, Oakland, California, USA, May
1996.

[4] P. Bonatti and P. Samarati. A unified framework for
regulating access and information release on the web.
Journal of Computer Security, 10(3):241-272, 2002.

[5] Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick,
and M. Strauss. REFEREE: Trust management for
web applications. The World Wide Web Journal,
2(3):127-139, 1997.

[6] Database language SQL — part 2: Foundation
(SQL/foundation). ISO International Standard,
ISO/IEC 9075:1999, 1999.

[7] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
and P. Samarati. Access control policies and languages
in open environments. In Security in Decentralized
Data Management. Springer, 2006.

8]

[9]

(12]

(13]

(14]

C. Ellison, B. Frantz, B. Lampson, R. Rivest,

B. Thomas, and T. Ylonen. SPKI certificate theory.
RFC2693, September 1999.

R. Housley, W. Ford, W. Polk, and D. Solo. Internet
X.509 Public Key Infrastructure Certificate and CRL
Profile, rfc 2459 edition, January 1999.
http://www.ietf.org/rfc/rfc2459.txt.

K. Irwin and T. Yu. Preventing attribute information
leakage in automated trust negotiation. In Proc. of the
12th ACM CCS, Alexandria, VA, USA, Nov. 2005.
N. Li, J. Mitchell, and W. Winsborough. Beyond
proof-of-compliance: Security analysis in trust
management. Journal of the ACM, 52(3):474-514,
May 2005.

N. Li, W. Winsborough, and J. Mitchell. Distributed
credential chain discovery in trust management.
Journal of Computer Security, 11(1):35-86, February
2003.

J. Ni, N. Li, and W. Winsborough. Automated trust
negotiation using cryptographic credentials. In Proc.
of the 12th ACM CCS, Alexandria, VA, USA, Nov.
2005.

P. Samarati and S. De Capitani di Vimercati. Access
control: Policies, models, and mechanisms. In

R. Focardi and R. Gorrieri, editors, Foundations of
Security Analysis and Design, LNCS 2171.
Springer-Verlag, 2001.

(15]

(17]

(18]

L. Wang, D. Wijesekera, and S. Jajodia. A logic-based
framework for attribute based access control. In Proc.
of the 2004 ACM Workshop on Formal Methods in
Security Engineering, Washington DC, USA, October
2004.

J. Warner, V. Atluri, and R. Mukkamala. An
attribute graph based approach to map local access
control policies to credential based access control
policies. In Proc. of the International Conference on
Information Systems Security (ICISS 2005), Kolkata,
India, December 2005.

M. Winslett, N. Ching, V. Jones, and I. Slepchin.
Using digital credentials on the World-Wide Web.
Journal of Computer Security, 1997.

T. Yu and M. Winslett. A unified scheme for resource
protection in automated trust negotiation. In Proc. of
the IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 2003.

T. Yu, M. Winslett, and K. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust
negotiation. ACM Transactions on Information and
System Security, 6(1):1-42, February 2003.

APPENDIX

A. TRANSLATION OF SQL TRUST STATEMENTS

[SQL trust statement

SQL statement

create authority AuthorityName
public_key = PublicKeyValue

insert into Authority values(AuthorityName,PublicKeyValue)

create authorityclass AuthorityClassName
[authoritative
AuthorityClassOrName [with [no] delegation]
{, AuthorityClassOrName [with [no] delegation]}]
[except AuthorityName{, AuthorityNamel}]
(AttrName AttrDomain [check (Condition)]
{,AttrName AttrDomain [check (Condition)]}
[, check (Condition)])

create global temporary table AwuthorityClassName
(AttrName AttrDomain [check (Condition)]
{, AttrName AttrDomain [check (Condition)]}
[, check (Condition)])

For AuthorityClassOrName in authoritative and with delegation do
insert into AuthorityClass
values(AuthorityClassName,AuthorityClassOrName,true)

For AuthorityClassOrName in authoritative and with no delegation do
insert into AuthorityClass
values(AuthorityClassName, AuthorityClassOrName,false)

For AuthorityName in except do
insert into NotAuthorityClass
values(AuthorityClassName, AuthorityName)

create trusttable TrustTableName
[authoritative
AuthorityClassOrName [with [no] delegation]
{, AuthorityClassOrName [with [no] delegation]}]
[except AuthorityName{, AuthorityNamel}]
(AttrName AttrDomain [check (Condition)]
{,AttrName AttrDomain [check (Condition)]}
[, check (Condition)])

create global temporary table TrustTableName

(AttrName AttrDomain [check (Condition)]
{, AttrName AttrDomain [check (Condition)]}
[, check (Condition)])

For AuthorityClassOrName in authoritative and with delegation do
insert into AuthorityTT
values(TrustTableName, AuthorityClassOrName,true)

For AuthorityClassOrName in authoritative and with no delegation do
insert into AuthorityTT
values(TrustTableName, AuthorityClassOrName,false)

For AuthorityName in except do
insert into NotAuthorityTT
values(TrustTableName, AuthorityName)

create trustpolicy PolicyName
for Role autoactivate as
Condition
/* Condition on trust table TrustTableName */

create trigger PolicyName
after insert on TrustTableName
for each row
when Condition
grant Role to session id
set role Role

	copyright: © ACM, (2007). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the Proceedings of the 2nd ACM Symposium on Information, Computer and Communications Security, Singapore http://doi.acm.org/10.1145/1229285.1229308

