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Abstract—The widespread diffusion of mobile devices integrat-
ing location capabilities makes the location of users yet another
type of sensitive information used by service providers in the
provision of accurate and personalized services (location-based
services – LBSs). A major problem in this context is that the
privacy of users is increasingly at risk, calling for solutions
balancing the benefits provided by LBSs and the privacy guar-
antees. In this paper, we study a novel privacy problem related
to inferences of sensitive information caused by the release of
consecutive positions to LBS providers. We provide an approach
based on Markov chains that allows the user to continuously
release her location information in a privacy-preserving way.
We then define an approach to counteract different inference
channels, addressing users’ preferences in terms of both privacy
requirements and quality of service.

Index Terms—Continuous LBSs, Inference, Location Privacy,
Markov Chain

I. INTRODUCTION

As mobile devices gain increasing popularity, information
about the physical location of users plays every day a more
central role in the provisioning of accurate services to users.
We all handle devices (e.g., cellular phones) enriched with
capabilities to determine our position and communicate it to
service providers. At the same time, many service providers
are implementing Location-Based Services (LBSs) whose
provision is based upon the knowledge of users’ position.
As a matter of fact, enriching services with location-based
functionalities can bring important benefits to the quality of the
provided applications, as users can enjoy the benefits conveyed
by an accurate and personalized service. As an example, a
LBS providing run-time road traffic information can release
the traffic status only in the proximity of user’s position, rather
than for the entire road network of a county. However, such
convenience comes at the price of an increasing privacy risk
for users releasing their private data to LBSs. In this context,
there is a growing demand for solutions that ensure a proper
protection of users’ location privacy, as witnessed by 55%
of LBS users showing concerns about the protection of their
privacy when interacting in a mobile environment [1].

Responding to the growing demand for privacy protection in
LBSs, in recent years the research community has addressed
the problem and proposed several solutions for guaranteeing
proper protection to users’ identity, location, and personal
information in the framework of LBSs. Such large body of

research mainly focused on the protection of users’ privacy
when a single location is released to the service provider
and proposed two classes of techniques: anonymity-based
techniques [2], which aim at protecting the link between users’
identity and their sensitive information, and obfuscation-based
techniques [3], which aim at protecting the sensitive informa-
tion of the users by degrading its accuracy.

Recently, a new line of work has focused on addressing the
problem of path privacy [1] with the main goal of anonymizing
the footsteps released by the users in their communications
with the LBS providers. Such techniques aim at producing
a path which is shared by multiple users making them and
their interactions with LBS providers indistinguishable. In this
paper, we address a novel privacy problem that consists in
limiting the amount of inference that can be drawn by an
observer accessing the path followed by users. Differently
from existing approaches [1], we assume that the paths re-
leased by users are linked to their identity. The contribution
of our work is therefore threefold. We first model our problem
by defining three classes of inferences that exploit private
information of the users: inference on sensitive positions that
a user has visited, inference on sensitive paths that a user has
traversed, and inference on unusual paths taken by the user.
We then propose a characterization of the user’s behavior as a
Markov chain, and provide a simple and intuitive mechanism
allowing users to specify preferences on the release of their
data. We finally propose a solution, based on user’s behavior
and preferences, which obfuscates the real path of the users
to limit inferences on sensitive information not intended for
disclosure (e.g., the fact that a user has driven for the first time
to a clinic for rare diseases).

The remainder of this paper is organized as follows. Sec-
tion II presents our motivations and reference scenario. Sec-
tion III describes a summary of our approach. Section IV
illustrates how users can specify privacy preferences on differ-
ent location information and quality of service requirements.
Section V describes the modeling of our system. Section VI
presents our privacy approach to limit inference attacks on lo-
cation information. Section VII discusses related work. Finally,
Section VIII gives our final remarks.
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II. REFERENCE SCENARIO AND MOTIVATIONS

Our reference scenario is a mobile and service-based infras-
tructure involving mobile users and LBS providers. Mobile
users carry mobile devices supporting both GSM/3G and GPS
protocols for communication. LBS providers offer services re-
quiring continuous sampling of users’ positions (e.g., LBSs for
social networks, tracking services, friend finder). Mobile users,
moving around a bi-dimensional space, release their positions
to LBS providers to enjoy location-based services. Location
information released by a user is univocally associated with
her, making different releases by the same user linkable. In the
remainder of this paper, we will refer to the following running
example.

Example 2.1 (Running example): Bob is a user who lives
and works in the city of Milan. Bob is subscribed to a
continuous LBSs and follows repetitive paths to move between
home, work, preferred supermarket and gym. Among his
repetitive movements, Bob is used to reach Milan downtown
after work for a drink. This path, though recurrent, is sensitive
for him, since he wants to hide this information to external
observers (sensitive movement). One morning, while at work,
Bob receives a call informing him that his mother has been
transported to the emergency room of a clinic specialized in
cardiovascular problems. Bob rushes to the emergency room,
which is in the path between his home and the place where
he works, to meet the head physician taking care of his
mother. Bob considers being at the emergency room a sensitive
information (sensitive position). Also, the week after the heart
attack, Bob visits a different clinic to get a second medical
advice on his mother’s disease. To reach this clinic, Bob moves
along an unusual path, which can be exploited for inference
by a LBS provider (unusual path).

The above running example identifies three specific in-
ference channels that exploit different information on the
users’ positions: sensitive positions, sensitive movements, and
unusual paths. In the following, we better detail how these
three kinds of information may cause inference channels.

• Sensitive positions. The knowledge that a user has visited
a certain place can disclose sensitive information. For
instance, the fact that Bob is visiting the emergency room
of a clinic specialized in cardiovascular problems can
disclose the information that he or one of his relatives
may suffer from a cardiovascular disease. The definition
of sensitive positions is user dependent, since different
users may have different perceptions. As an example,
while Bob, aiming to keep private health information,
may consider being in a hospital a sensitive position,
Alice may be willing to disclose the fact that she is at the
hospital and consider sensitive the information of being
in religious places.

• Sensitive movements. Some paths may be sensitive since
they leak private information. For instance, the fact that
Bob is walking in Milan downtown every day after work
can disclose information about his lifestyle. Recalling that
location data released by a user to the LBS provider

are linked to the user’s identity, the LBS provider can
observe the footprints of each user on the road network.
Inferences exploiting sensitive paths are due to the ob-
servation that a user followed a path on the road network
which is maybe sensitive, and possibly recurrent. We note
that a sensitive path can be composed of an arbitrary
number of movements. In this paper, without loss of
generality, we consider sensitive paths composed of a
single movement, as the definition of a sensitive path in
terms of a “sensitive movement” implicitly captures the
more general definition of a sensitive path composed of
multiple consecutive movements. Like for sensitive posi-
tions, the sensitivity associated with a specific movement
depends on the individual user’s perception.

• Unusual paths. Users’ paths are usually repetitive and
strongly depend on users’ profile (e.g., the place where
they work/live). We assume these paths, called usual
paths, to be known by the observer. Inferences exploiting
unusual paths are due to the observation of deviations in
the path followed by a user with respect to usual paths.
For instance, in our example, Bob takes an unusual path
to visit a clinic specialized in cardiovascular diseases for
a second advice. An observer noticing this deviation may
infer sensitive health information related to Bob. We note
that what causes this inference is the deviation from the
usual path, rather than the path itself. Differently from
sensitive positions and movements, the sensitivity of an
unusual path is intrinsic to the path itself, and does not
depend on the perception of the individual users.

The motivation of our work is to provide users with an easy-
to-use and intuitive solution to limit the possible inferences
that an observer can draw from the knowledge of users’
positions. Our goal is therefore to design an approach for
protecting the privacy of the users against the three inference
channels introduced in this section.

III. SKETCH OF OUR APPROACH

We consider a privacy architecture where all communica-
tions between mobile users and LBS providers are mediated
and filtered by a trusted privacy middleware so to block infer-
ence channels. The trusted middleware evaluates the location
information released by the user, assesses the risk of inference,
and possibly obfuscates the path of the user before releasing
it to a LBS provider. In other words, as shown in Figure 1, the
privacy middleware enforces users’ preferences and obfuscates
users’ paths, to create cover stories that are released to the LBS
provider for protecting users against the inference channels
based on sensitive positions, sensitive movements, and unusual
paths. The cover story must satisfy three basic properties: i)
being safe w.r.t. inference channels; ii) being realistic, so that
an observer cannot detect the cover stories among the released
location information; and iii) minimizing the distortion w.r.t.
the real information, so to preserve as much as possible
the quality of the provided service. We note that given the
increasing computational resources of mobile devices, the
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Fig. 1: Privacy Architecture

privacy middleware can be installed on users’ device with no
need of a trusted third party.

To address the above properties, our solution assumes a
delay in the release of location information to the LBS
provider (so to enable possible inspection of cover stories).
Then, the privacy middleware releases the obfuscated location
at time t based on the observed path at time t+k. This is a
feasible assumption in many real-world scenarios (e.g., having
a tracking service or a friend finder with a delay of few seconds
does not degrade the quality of the service), and allows the
privacy middleware to evaluate the risk of inference and to
generate the cover story using additional locations. In fact,
based on the introduced delay, the middleware evaluates the
movement trends of the users at time t+k to adjust the cover
story at time t and address both privacy and service quality
preferences.

The activities of the privacy middleware are driven by pri-
vacy preferences. These preferences are specified by each user
and identify those sensitive positions and/or movements which
may cause inference on private information. Our solution
uses these preferences to counteract the inference channels in
Section II. Intuitively, a different cover story will be defined by
the privacy middleware depending on the inference channels
as follows: i) sensitive position, a cover story will be produced
such that it does not end in a sensitive position; ii) sensitive
movements, a cover story will be produced such that it does
not contain sensitive movements; iii) unusual path, a cover
story will be produced such that the unusual path is mapped
to a usual one.

IV. SYSTEM MODELING AND USERS’ PREFERENCES

We consider a mobile user u moving in a bi-dimensional
space S constrained by a road network. We model the road
network as a graph G(V ,E) with vertices in V representing
road intersections (e.g., roundabouts, traffic lights) and points
of interest (e.g., emergency room, shopping center, gym) and
edges in E representing roads. Figure 2 shows an example
of graph for the running example in Example 2.1. In the
remainder of the paper, we denote vertices that refer to road
intersections and points of interest with their initial letter (e.g.,
we refer to the emergency room with e).

Based on the graph G(V ,E), we provide a mechanism
that allows each user to express her privacy preferences in a
simple and intuitive way. In our framing of the problem, each
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Fig. 2: Graph representation of the network in Example 2.1

user maintains a set of preferences (i.e., sensitivity levels) for
different positions and/or movements, which indirectly specify
the sensitive information that she aims to safeguard.

We allow users to define two different types of preferences:
privacy preferences that specify positions and movements that
a user perceives as sensitive, and service quality preferences
that specify a minimum quality level that must be guaranteed
by the location-based service. We assume unusual paths to be
sensitive by default.

In the following we illustrate how the above preferences can
be specified by the users on G(V ,E).

Privacy preferences. Users express privacy preferences as
sensitivity labels that they can associate with both vertices
and edges of the graph G(V ,E). Sensitivity labels applied by
user u to vertices (edges, resp.) of G(V ,E) capture how much
u considers sensitive the fact that she has visited the associated
location (made the associated movement, resp.). In this paper,
for simplicity but without loss of generality, we consider a set
of labels composed by two elements, 0 and 1, representing a
non-sensitive and sensitive location information, respectively.
The set of possible sensitivity labels could be extended to any
set, composed of an arbitrary number of labels, provided the
existence of a (partial) order relationship over them.

Users can specify the sensitivity of the vertices and edges in
G(V ,E) via a labeling function λ:V ∪E→ {0, 1}, to counteract
inference attacks. In particular, users specify privacy prefer-
ences on vertices of G(V ,E) to represent sensitive positions.
The sensitivity label states whether the user considers a
sensitive information the fact that she stopped in the posi-
tion represented by v (λ(v)=1) or not (λ(v)=0). Sensitive
positions form a subset Vsens⊆V :∀v∈Vsens ,λ(v)=1, which
includes points of interest that a user considers sensitive. For
instance, with reference to our running example, Vsens={e}.
In fact, Bob considers the emergency room of the clinic
for cardiovascular diseases in vertex e as the only sensitive
position and, accordingly, he specifies λ(e)=1. All other
positions are not sensitive (e.g., λ(h)=0, since he does not
consider his house a sensitive position).



Similarly, users specify privacy preferences on edges of
G(V ,E) to represent sensitive movements. The sensitivity
label states whether the user considers a sensitive information
the fact that she traversed the road represented by (vi, vj)
(λ((vi, vj))=1) or not (λ((vi, vj))=0). Sensitive move-
ments form a subset Esens⊆E:∀(vi, vj)∈Esens,λ((vi, vj))=1,
which includes movements that a user considers sensi-
tive. For instance, with reference to our running example,
Esens={(w,d)}. In fact, Bob considers his walking from work
(vertex w) to the city downtown (vertex d) for a drink the only
sensitive movement, and specifies λ((w,d))=1.

We note that a default preference policy can be defined
labeling all vertices and edges as sensitive (non-sensitive,
resp.). Users can also specify preferences at different levels of
granularity. For instance, in Example 2.1, Bob can either spec-
ify each clinic as sensitive, or specify CLINICS as a sensitive
category. In the latter case, we assume a pre-processing phase
translating preferences on sensitive categories into preferences
on specific positions on the space S. For instance, if Bob
specifies CLINICS as a sensitive category, this preference can
be used to protect movements of Bob who stops at either e
or c in Figure 2.

Service quality preferences. As previously mentioned, we
counteract inferences by releasing to the LBS provider cover
stories that obfuscate the real position (path, resp.) of a user
with an alternative one. Intuitively, the more the distance
between the obfuscated position (path, resp.) and the real one,
the higher the privacy protection but the poorer the received
service quality. The goal of service quality preferences is
therefore to impose an upper bound to the level of obfuscation
applied to the real position (path, resp.), to balance privacy
protection and service quality. As an example, suppose that
Bob is moving downtown Milan and his cover story is releas-
ing a position in the suburbs of Milan. If, on one side, the
cover story gives high privacy, on the other side, the quality
of the service is highly compromised. We capture this need
by allowing a user to define the maximum distance δ that can
exist between her real position and the corresponding one in
the cover story. For instance, with reference to our running
example, Bob can choose δ=200, meaning that the maximum
distance between his real position and the position disclosed
by the cover story cannot be higher than 200 meters.

The above preferences form the inference policy of a user,
which is formally defined as follows.

Definition 4.1 (Inference Policy): Let u be a user and
G(V ,E) the graph of the road network in S. The inference pol-
icy Pu of u is a triple (Vsens, Esens, δ) such that: Vsens⊆V ,
Esens⊆E, and δ∈ R.

Example 4.2: Consider our running example in Exam-
ple 2.1 and the graph in Figure 2. The inference policy of
Bob is represented by the triple PBob = ({e}, {(w,d)}, 200),
stating that: i) he has a privacy preference on sensitive posi-
tions (Vsens={e}); ii) he has a privacy preference on sensitive
movements (Esens={(w,d)}); and iii) he has a service quality
preference on the maximum distance (δ=200).

V. MODELING USERS’ MOVEMENTS

To properly protect the privacy of a user against the infer-
ence channels described in Section II, we need to capture the
moving behavior of the user, that is, the usual paths followed
by her when moving in S. The modeling of these paths is
necessary here for two reasons: i) to produce a realistic cover
story, indistinguishable from the real movements of the user;
and ii) to protect the user against inferences on unusual paths.

In principle, different aspects can be considered to model
the moving behavior of a user, such as the context in which
the user is moving, the time at which a movement happens,
the history of past movements, the reason why the user is
moving, or the motion model. In this paper, for the sake of
simplicity, we consider the frequency of the movements, that
is, the number of times a user u is moving from a vertex vi
to a vertex vj , to represent her moving behavior.

We observe the movements of a user u on the graph
G(V ,E) during a learning step. In this step, the mobile
user simulates a communication with a LBS provider and
releases continuous samples of her position to the middleware.
The latter enforces user’s preferences and, based on the
produced cover stories, calculates a count matrix specifying
the number of times (frequency) the user is moving from
a vertex vi∈V to a vertex vj∈V . The count matrix M
associated with V is a square matrix of size |V |×|V |, such
that ∀i=1, . . . , |V |, ∀j=1, . . . , |V |, cij=M[i][j] represents the
number of times u has left position vi toward position vj . We
note that the reason to generate the count matrix based on
the cover story is to avoid inferences based on the real user’s
movements. For instance, consider Bob’s movements in our
running example (Example 2.1). Despite considered sensitive,
the movement to Milan downtown is usual for Bob, and a
count matrix calculated on real movements would include it.
After the learning step, when releasing the cover story, the pri-
vacy preferences of Bob would cause the sensitive movement
towards Milan downtown to be excluded from the released
path. This would cause an evident inconsistency between the
frequencies in the count matrix and the released cover stories,
opening the door to a new inference channel on Bob’s privacy
preferences. By contrast, if the count matrix is calculated on
data enforcing the privacy preferences (see Example 5.1), no
inconsistencies will exist between the released cover stories
and the count matrix.

Example 5.1: Suppose that in the learning step, for each of
the vertices of the space graph in Figure 2, the middleware
records 200 movements for Bob. Figure 3(a) shows the count
matrix for Bob at the end of the recording phase. Each cell in
the matrix shows the number of times Bob has entered a vertex
and left toward another vertex. For instance, out of 200 times
Bob has left his home in h (row 1), he left 70 times toward
the theater in t (column 2), 70 toward the shopping center in
s (column 4), 60 toward the roundabout in r (column 5), and
never toward g, e, m, c, w and d. Although Bob is moving
every day from his workplace to the city downtown, the count
matrix does not include this movement. This is due to the fact



h t g s r e m c w d
h - 70 - 70 60 - - - - -
t 100 - 100 - - - - - - -
g - 60 - - 40 - 80 20 - -
s 140 - - - - 60 - - - -
r 20 - 130 - - 30 - - 20 -
e - - - 140 40 - - - 20 -
m - - 160 - - - - 40 - -
c - - 100 - - - 100 - - -
w - - - - 80 120 - - - -
d - - - - - - - - - -

h t g s r e m c w
h 0.00 0.35 0.00 0.35 0.30 0.00 0.00 0.00 0.00
t 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
g 0.00 0.30 0.00 0.00 0.20 0.00 0.40 0.10 0.00
s 0.70 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00
r 0.10 0.00 0.65 0.00 0.00 0.15 0.00 0.00 0.10
e 0.00 0.00 0.00 0.70 0.20 0.00 0.00 0.00 0.10
m 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.20 0.00
c 0.00 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00
w 0.00 0.00 0.00 0.00 0.40 0.60 0.00 0.00 0.00

(a) (b)

Fig. 3: Count matrix (a) and related transition function (b)

that the preferences of Bob are enforced before calculating the
matrix frequencies.

The count matrix associated with a user u represent the
probability with which u is moving in G(V ,E). In fact, the
probability that u leaves position vi∈V toward position vj∈V ,
∀i, j=1, . . . , |V |, is trivially computed as: P (j|i)= cij∑

i cij
. For

instance, with reference to the count matrix in Figure 3, the
probability for Bob of moving between his home in h and the
city theater in t is computed as: cht/(cht + chs + chr) =
70/200 = 0.35.

The probabilities P (j|i), ∀i, j∈V captured by our count
matrix correspond to the transition function of a first-order
Markov model [4]. In our modeling, the positions of a user
over time are then represented as a set of stochastic variables,
that can assume different values in the set V of locations
(i.e., states in the Markov model). The transition function
characterizing a Markov model maps the moving behavior of
a user u, that is, the “likelihood” with which u moves in
S and selects the next movement given the current position.
The probability between two consecutive points can then be
extended to calculate the probability of a path as follows.

Definition 5.2 (Path probability): Given a count matrix
M for a user u and a path 〈v1,. . . ,vj〉 of vertices, the
probability P (〈v1, . . . , vj〉) of 〈v1,. . . ,vj〉 is computed as∏j−1

k=1 P (k+1|k).
Definition 5.2 computes the probability for u to traverse a

path as the joint probability of traversing the corresponding
sequence of edges. For instance, the probability for Bob of
moving between his home (vertex h), the theater (vertex t),
and the gym (vertex g) is computed as: cht × ctg=0.35 ×
0.50=0.175.

We note that more than one Markov model can be associated
with the same user u. The moving behavior of u, in fact, can
change with contextual information (e.g., the road from home
to work is very probable during the week, while less probable
during the weekends). However, without loss of generality, we
assume each user to be associated with a single Markov model,
and we note that our model can be straightforwardly extended
for capturing the existence of a set thereof.

We define the transition function of the Markov model
as a square matrix T, where T[i][j]=P (j|i), ∀i, j∈V . T must
satisfy the following properties:

1) ∀i=1, . . . , |V |, ∀j=1, . . . , |V |, T[i][j]≥0, that is, all
elements of the matrix T are greater or equal to zero;

2) ∀i=1, . . . , |V |,
∑|V |

j=1 T[i][j]=1, that is, the elements on
each row of the matrix T sum to 1.

Figure 3(b) illustrates the transition function computed from
the count matrix in Figure 3(a) for Bob. We note that to
guarantee the above properties, vertices that have never been
reached by the user in the count matrix (e.g., vertex d in
Figure 3(a)), are not included in T. We consider these areas
as shadow areas. For the sake of simplicity, in the following of
this section, we do not consider shadow areas and we denote
with G(V ,E) the graph that can be generated starting from the
transition function in Figure 3(b). Intuitively, G(V ,E) is equal
to the graph in Figure 2 without vertex d and edge (w,d).

VI. COUNTERACTING INFERENCES

We describe our solution to protect privacy of mobile users
against the three inference channels that can be exploited
by a location provider (see Section II). We consider a user
u following a path 〈v1,. . . ,vi−1,vi〉 in G(V ,E) that: i) stops
in a sensitive position vi (i.e., such that λ(vi)=1); ii) trav-
els along a sensitive movement (vi−1, vi) (i.e., such that
λ((vi−1, vi))=1); and iii) takes a movement (vi−1, vi) which
makes the path unusual.

Inference on sensitive positions. When u stops at vi and
λ(vi)=1, a risk of inference arises and vi should not be
released by the middleware. Our solution builds a cover
story in which the path followed by u is obfuscated by the
middleware to release a different path 〈v1,. . . ,vj〉, where i *=j
and λ(vj)=0. To this aim, we build a set Vsafe of safe
positions enforcing the preferences of u, formally defined as
follows.

Definition 6.1 (Vsafe): Let V be the set of vertices model-
ing road intersections and points of interest in the space S,
and vi the sensitive position at which u stops. A set Vsafe of
safe positions is a subset of V such that ∀v∈Vsafe, λ(v)=0
and d(vi, v) ≤ δ, with d(vi, v) the distance between vi and v,
and δ the service quality preference in Pu .

We note that Vsafe addresses both privacy preferences (i.e.,
λ(v)=0) and service quality preferences (i.e., d(vi, v) ≤ δ).
We also note that the set of safe positions, in conjunction with
the specification of sensitive positions as categories, allows to
counteract inferences on sensitive positions while u is moving
in shadow areas. Preferences on sensitive and non-sensitive
positions in shadow areas are in fact implicitly specified using
categories.
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Fig. 4: Counteracting inference on sensitive positions

Given 〈v1,. . . ,vi〉 and Vsafe, the privacy middleware has
to select the best position v̂j∈Vsafe and to release a path
〈v1,. . . ,v̂j〉 that will simulate the movement of u toward v̂j .
The best position v̂j is the position that is reached with the
highest probability (see Definition 5.2). We can then associate
a probability P (〈v1, . . . , vj〉) for each vj∈Vsafe and select
the vertex v̂j=vj for which P (〈v1, . . . , vj〉) is maximum. The
cover story is then built by the middleware as follows: i) if
v̂j is reached after the sensitive position vi, the middleware
releases a set of fake positions toward v̂j ; ii) if v̂j is reached
before vi, the middleware has to suppress all positions to be
released after v̂j (thanks to the delay in the release of cover
stories discussed in Section III).

In case |Vsafe|=0, no safe positions exist around u. We
then propose to alert u and apply an exit strategy choosing
a position v such that λ(v)=1 for u, while λ(v)=0 for the
majority of users. The intuition is that releasing a position safe
for the majority of other users can reduce the risk of inference.

Figure 4 shows an example of how inferences on sensitive
positions are counteracted. In the figure and in the remainder
of the paper, gray vertices and edges are not included in Bob’s
path, while black vertices (edges, resp.) represent positions
where Bob has stopped (movements Bob have done, resp.).
Figure 4(a) shows the real path of Bob going from work to
the emergency room, and stopping there. Since λ(e)=1, the
middleware computes Vsafe={s,r}, and creates the cover
story with the most probable position according to T (see
Figure 3(b)), that is, s. Figure 4(b) illustrates the cover story
〈w,e,s〉 released to the LBS provider.

Inference on sensitive movements. When u traverses an edge
(vi−1, vi) corresponding to a sensitive movement, a risk of
inference arises and (vi−1, vi) should not be released by the
middleware. Our solution builds a cover story in which the
path followed by u is obfuscated by the middleware to release
a different path 〈v1,. . . ,vi−1,vj〉, where vi is substituted by
vj provided that there exists an edge (vi−1, vj). To this aim,
we build a set Esafe of safe movements, formally defined as
follows.

Definition 6.2 (Esafe): Let E be the set of edges modeling
roads in the space S, and (vi−1, vi) the sensitive move-
ment taken by u. A set Esafe of safe movements is a
subset of E such that ∀(vi−1, vj)∈Esafe, λ((vi−1, vj))=0
and d(vi, vj)≤δ, with d(vi, vj) the distance between the final
vertices of the real movement (i.e., vi) and of the safe
movement (i.e., vj), and δ the service quality preference in
Pu .

We note that Esafe addresses both privacy preferences
(i.e., λ((vi−1, vj))=0) and service quality preferences (i.e.,
d(vi, vj) ≤ δ). Given Esafe, the privacy middleware has then
to select and release the best movement (v̂h, v̂k)∈Esafe with
v̂h=vi−1. We propose a greedy approach that selects the most
probable movement (v̂h, v̂k), based on Definition 5.2 and T.

In case |Esafe|=0, no safe movements exist around u,
which end in positions satisfying δ. We then apply an exit
strategy that suppresses the release of the real positions
following vi−1, simulating u stopping at vi−1.

Note that the approach described in this section is used only
during the learning phase. In fact, in the transition function
associated with u, sensitive movements will be associated with
a probability equal to 0, and then managed as unusual paths.

Figure 5 illustrates an example of how inferences on sensi-
tive movements are counteracted. Figure 5(a) shows the real
path of Bob going from work to Milan downtown. Given
λ(w,d)=1, the middleware computes Esafe. In our example,
Esafe=∅, since no positions in V are closer than δ=200
meters to Milan downtown. The middleware then creates a
cover story in which Bob is at work. Figure 5(b) illustrates
the cover story released to the LBS provider.

Inference on unusual paths. When a user u follows an
unusual path 〈v1,. . . ,vi−1,vi〉, a risk of inference arises and
the path should be manipulated before its release. Our solution
builds a cover story in which the path followed by u is
obfuscated by the middleware to release a different path
〈v1,. . . ,vi−1,vj〉, which can be considered as usual.

The first step in this scenario requires to identify an unusual
path, based on the user behavior captured by the transition
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function T. In this paper, we consider unusual those paths
whose probability (Definition 5.2) deviates from an average
probability. In particular, given a position vi−1 in the path at
a given point in time t, we evaluate the usualness of the path
taken by the user toward vi with respect to the possible edges
(vi−1, vj) that u can choose at time t+1. An unusual path can
then be formally defined as follows.

Definition 6.3 (Unusual path): Let u be a user who
has released a path 〈v1,. . . ,vi−1〉 and is moving from
vi−1 to vi. The path 〈v1,. . . ,vi−1,vi〉 is unusual if
P (〈v1, . . . , vi−1, vi〉)<α·

∑
vj∈Vj

P (〈v1,...,vi−1,vj〉)
|Vj | , with

Vj={vj |∃(vi−1, vj) and d(vi, vj)≤δ} and α∈[0, 1].
We note that α is a weight applied to the average probability

of all paths 〈v1,. . . ,vi−1,vj〉 that should be considered in the
discovery of unusual path. The higher the value for α, the
more restrictive the condition that a path must satisfy to
be considered usual. If the probability P (〈v1, . . . , vi−1, vi〉)
exceeds the average value weighted by α, then the path leading
to vi is usual.

Similarly to Definition 6.2, in case the path is unusual,
the privacy middleware releases a cover story using a greedy

approach. It then selects the usual path 〈v1,. . . ,vi−1,vj〉 with
higher probability such that d(vi, vj)≤δ.

Figure 6 illustrates an example of how inferences on unusual
paths are counteracted. Figure 6(a) shows the real path of Bob
going from work to the clinic for a different medical advice.
According to the transition function T in Figure 3(b), the path
〈w,r,g〉 can be considered usual and, therefore, the middleware
does not build any cover story for it. However, leaving the
gym toward the clinic (i.e., (g,c)) makes the path 〈w,r,g,c〉
unusual. Therefore, according to T and δ, the middleware
builds the cover story 〈w,r,g,m〉. Figure 6(b) illustrates the
cover story released to the LBS provider.

VII. RELATED WORK

The problem of protecting location privacy has been under
the attention of many researchers in recent years, resulting in
a large number of privacy-enhancing solutions [1], [2].

First approaches to the protection of location privacy have
considered a scenario in which a single position is released
to the LBS. In this context two main classes of techniques
have been defined: anonymity-based and obfuscation-based.
Anonymity-based solutions (e.g., [2], [5], [6], [7], [8], [9],



[10]) aim at protecting the association between a user and her
sensitive information by avoiding the possibility to re-identify
the user observing her request(s). Such techniques are typically
based on the concept of k-anonymity, originally devised for
databases and data release scenarios [11]. The general idea
is that of degrading the precision of the queries posed by
anonymized users in such a way that at least k different users
are indistinguishable from their location. Obfuscation-based
techniques (e.g., [3], [12], [13]) aim at protecting location
privacy by degrading the accuracy of users’ location. The main
goal of these techniques is to perturb the location information
of the users still maintaining a binding with their identity.

Recently, a line of work has addressed the problem of pro-
tecting path, or trajectory, privacy [1]. The solution proposed
in [14] is based on a spatial cloaking technique, introducing
the concept of dynamic grouping of users issuing queries. This
technique ensures that a cloaked spatial region is shared by at
least k users and, to protect user trajectories, that all k users
appear as belonging to the same region as time passes. In [15],
the authors put forward the idea of evaluating the distortion
associated with location information by means of the perimeter
of a cloaked region. In [16], the protection level characterizing
a circular cloaked spatial region is measured in terms of
its entropy, and a polynomial-time algorithm is proposed to
determine the minimum circle that surrounds a user and other
k−1 users. A different solution is proposed in [17], where first-
order Markov chains are used to predict synthetic trajectories
from historical data, and intersecting paths are submitted at the
same time to the service provider to guarantee the creation
of a mix-zone. Releasing simulated locations is at the basis
of the technique proposed in [18]. This technique adopts
probabilistic models of driving behaviors, applied for creating
realistic driving trips, and GPS noise to decrease the precision
of the starting point of a trip. A method for preserving privacy
of GPS traces guaranteeing an appropriate protection level to
users moving in low-density areas is proposed in [19]. All the
above solutions provide mechanisms to protect the location
privacy of the users at different levels, but do not address
the problem of protecting users’ from inferences done on the
released paths. Solutions for path privacy protection in fact
mostly focus on guaranteeing the anonymity of the users.
By providing a solution that reduces inferences on released
paths, we make a new step toward the definition of a privacy-
preserving mobile environment.

VIII. CONCLUSIONS AND FUTURE WORK

Mobile communications and location-based services are
playing a crucial role in today IT systems. However, the
unrestricted management of related location information is
putting at risk the privacy of the users and may result in a
society where mobile technologies – whose primary goal is
to enable the development of innovative and valuable services
– are used to track and keep individuals under control. The
approach presented in this paper aims at providing a solution
that limits the amount of inference that can be drawn by an
attacker observing users’ movements. Our approach can be

easily integrated within existing devices, presents a modeling
of users’ movements based on Markov chains, and provides
a simple solution for expressing and enforcing users’ prefer-
ences. Possible future work includes an enhanced solution for
modeling users’ behavior, a smarter selection of cover stories,
and an approach to evaluate the quality of the obfuscated paths.
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