
A Comparison of Modeling Strategies in Defining XML-based
Access Control Languages

Claudio Ardagna Sabrina De Capitani di Vimercati

Dip. di Tecnologie dell’Informazione

Università di Milano

26013 Crema, Italy

{ardagna,decapita}@dti.unimi.it

Abstract

One of the most important features of XML-based Web services is that they can be easily
accessed over the Internet, but this makes them vulnerable to a series of security threats. What
makes security for web services so challenging is their distributed and heterogeneous nature.
Access control policy specification for controlling access to Web services is then becoming an
emergent research area due to the rapid development of Web services in modern economy. Two
relevant access control languages using XML are WS-Policy and XACML. The main conceptual
difference between these two languages is that while XACML is based on a well-defined model
that provides a formal representation of the access control security policy and its working,
WS-Policy has been developed without taking into consideration this modeling phase.

In this paper, we critique WS-Policy pointing out some of its shortcomings. We then describe
the architecture we implemented and that offers an interface for controlling access to Web
services.

1 Introduction

Accessing information on the global Internet has become an essential requirement of the modern
economy. Recently, the focus has shifted from access to traditional information stored in WWW
sites to access to large e-services such as e-government services, remote banking, or airline reserva-
tion systems [10]. Distributed Web service applications are also coming of age, designed as custom
applications exploiting single Web services already available on the Internet and integrating the
results. The concept of Web service is similar to the concept of object in the object oriented pro-
gramming paradigm: Web services provide some functionalities (services) to the clients through an
interface well defined. The main difference between Web services and objects is that a Web service
can be available on the Web and can be accessed by sending messages (e.g., SOAP messages),
requesting specific actions, and receiving message responses (including fault indications). Calls
to Web services, and in general e-services, are more easily modeled by distributed object protocols
as Remote Method Calls (RMCs), such as CORBA [19], DCOM [7], and Java-RMI [12], in which
clients pass parameters to remote components and get some kind of result in return. However, these
approaches exhibit two main problems that prevent their large-scale use on the Net: verbosity and

1



firewall traversal and user authentication. Many RMC-based protocols require considerable band-
width due to their high service to data packets ratio and often many organizations are reluctant
to enable RMC-based protocols. To avoid these problems, the Internet and Web communities have
provided several proposals for the use of XML in lightweight network protocols and distributed
applications: SOAP [18], WSDL [8], and UDDI [20] to name a few. One of the most important
features of Web services is the possibility to use them for communicating and automatically ex-
changing information. Cross-enterprise exchange of information over the Internet is vital but may
have security implications. There are three levels at which Web service security can be applied:
transport level , authentication level, and application level. The transport level is probably one of the
easiest ways to introduce security into a Web service architecture. The most widely used security
mechanisms are HTTPS (i.e., the combination of HTTP and the Secure Sockets Layer protocol),
and firewalls. The advantage of the transport layer security is that an application merely asks for
a secure connection and no other application requirements are needed. However, this approach has
two limitations. First, it allows for securing the connection only, not the data itself. This means
that while the data is in transit, it will be secure. But, at the point it reaches the destination
or any intermediary, there is nothing to protect the information. For Web services, protection at
the destination is vital because the data could be processed by many intermediaries. The other
limitation is that it is basically an all-or-nothing operation: it is not possible to selectively control
what specific data is encrypted and who might be authorized to view it. The second level of security
can principally provide two security mechanisms: a third party authentication mechanism which
uses a a credential repository, and a certificate-based mechanism. The third level of security deals
with securing the message itself. To this purpose, some of the available XML standards to help
encrypt or sign the data can be used. XML digital signatures are typically used for data integrity,
authentication, and non-repudiation. For instance, application level security can be used to vali-
date that a given SOAP message cames from a particular party and that it has not been modified.
XML Encryption adds the confidentially aspect, indicating whether the data can be viewed by the
receiver. These XML security standards have been around for a while and are fairly stable for
development projects. There are other Web services security standards that are still being defined
by the industry: Security Assertion Markup Language (SAML) [17] and WS-Security [2]. SAML
is an XML-based framework for exchanging security information defined by the OASIS organiza-
tion. The SAML specification defines how to represent security credentials (assertions in SAML)
using XML. SAML is designed to enable secure single sign-on to applications within organizations
and across companies and supports ten different authentication mechanisms: the combination of
username and password, tickets Kerberos, Secure Remote Password protocol (RFC 2945), token
hardware, SSL (Secure Sockets Layer) client-side certificate, X.509 certificate, Pretty Good Privacy,
Simple Public Key Infrastructure, XKMS (XML key management specification), and XML Digital
Signature. After the subject authentication, the server SAML returns a particular security token to
the client that makes the initial request. This security token has limited time validity and, in such
cases, can offer only some kinds of access (read, write, or delete). WS-Security is being developed
by IBM, Microsoft, and Verisign. WS-Security is a means of using XML to encrypt and digitally
sign SOAP messages. It also provides a mechanism for passing security tokens for authentication
and authorization for the SOAP messages. A typical example of security token is a user name and
password token, in which a user name and password are included as text. SAML can provide a
way to create the tokens used in WS-Security. The authentication mechanisms supported by WS-

2



Security are: the combination of username and password (a password can be sent unprotected or in
hashed format), tickets Kerberos, and X.509 certificates. Element Security is used for including
security information in a SOAP header message. Although WS-Security does not address other
security issues, such as authorization or access control, WS-Security represents a useful initiative
to support other security services.

Another important class of security languages that can be used at the application level are
the access control (or policy) languages. Several proposals have been introduced for access con-
trol to distributed heterogeneous resources from multiple sources based on the use of attribute
certificates [3, 9, 11, 13]. Two relevant access control languages using XML are WS-Policy [6]
and XACML [15]. Based on the WS-Security, WS-Policy provides a grammar for expressing
Web service policies. The WS-Policy includes a set of general messaging related assertions de-
fined in WS-PolicyAssertions [4] and a set of security policy assertions related to supporting the
WS-Security specification defined in WS-SecurityPolicy [21]. In addition to the WS-Policy, WS-
PolicyAttachment [5] defines how to attach these policies to Web services or other subjects such as
service locators. The eXtensible Access Control Markup Language (XACML) [15] is the result of a
recent OASIS standardization effort proposing an XML-based language to express and interchange
access control policies. XACML is designed to express authorization policies in XML against ob-
jects that are themselves identified in XML. The language can represent the functionalities of most
policy representation mechanisms. An XACML policy consists of a set of rules whose main com-
ponents are: a target, an effect, and a condition.1 The target defines the set of resources, subjects,
and actions to which the rule is intended to apply. The effect of the rule can be permit or deny.
The condition represents a boolean expression that may further refine the applicability of the rule.
A request consists of attributes associated with the requesting subject, the resource involved in
the request, the action being performed and the environment. A response contains one of four
decisions: permit, deny, not applicable (when no applicable policies or rules could be found), or
indeterminate (when some errors occurred during the access control process). A request, a policy,
and the corresponding response form the XACML Context.

The main conceptual difference between XACML and WS-Policy is that while XACML is
based on a model that provides a formal representation of the access control security policy and
its working, WS-Policy has been developed without taking into consideration this modeling phase.
The result is an ambiguous language that is subject to different interpretations and uses. This
means that given a set of policies expressed by using the syntax and semantics of WS-Policy, their
evaluation may have a different result depending on how the ambiguities of the language has been
resolved. This is obviously a serious problem especially in the access control area [1], where access
decisions have to be deterministic. The contributions of this paper can be summarized as follows.
First, we point out some of the WS-Policy shortcomings, showing how they can be fixed (see
Section 3). Second, we describe the architecture we have implemented and that offers an interface
for controlling access to Web services (see Section 4), and illustrate how the policy enforcement
process works (see Section 5).

1We keep at a simplified level the description of the language and refer the reader to the OASIS proposal [15] for
the complete specification.

3



Value Meaning

wsp:Required The assertion must be applied to the subject. If the assertion is not satisfy, a fault or
error will occur.

wsp:Rejected The assertion is not supported and if present will cause failure.
wsp:Optional The assertion may be applied but it is not required.
wsp:Observed The assertion will be applied and requestors of the service are informed that the policy

will be applied.
wsp:Ignored The assertion is processed, but ignored; no action will be taken as a result of it being

specified. Subjects and requestors are informed that the policy will be ignored.

Figure 1: Values for attribute Usage

2 WS-Policy overview

Web Service Policy framework (WS-Policy) provides a generic model and a flexible and extensible
grammar for describing and communicating the policies of a Web service [6]. Other specifications,
such as WS-PolicyAssertions [4] and WS-SecurityPolicy [21], provide specific applications of this
grammar for their domains. A policy is a collection of one or more policy assertions that represent
an individual preference, requirement, capability, or other properties that have to be satisfied to
access to the policy subject associated with the assertion. The XML representation of a policy
assertion is called policy expression.2 Element wsp:Policy is the container for a policy expression.
Policy assertions are typed and can be simple or complex . A simple assertion can be compared to
other assertions of the same type without any special consideration about the semantics’ assertion.
A complex assertion requires an assertion type-specific means of comparison. The assertion type can
be defined in such a way that the assertion is parametrized. For instance, an assertion describing
the maximum acceptable password size (number of chars) would likely accept an integer parameter
indicating the maximum char count. In contrast, an assertion that simply indicates that a password
is required does not need parameters; its presence is enough to convey the assertion. Every assertion
is associated with an obligatory usage qualifier (attribute Usage) that specifies how the assertion
should be processed. Figure 1 illustrates the five possible values for attribute Usage together with
their meaning.

In cases where there are multiple choices for granting a given access (e.g., different authentica-
tion mechanisms), attribute wsp:preference can be used to establish an order among the different
choices. Possible values for attribute wsp:preference are integers, where a higher number rep-
resents a higher preference. WS-Policy also provides an element, called wsp:PolicyReference,
that can be used for sharing policy expressions between different policies. Conceptually, when a
reference is present, it is replaced by the content of the referenced policy expression.

WS-Policy defines a set of policy operators for combining policy assertions. More precisely,
WS-Policy provides three different types of policy operators:

• wsp:All requires that all of its child elements be satisfied;

2Note that using XML to represent policies facilitates interoperability between heterogeneous platforms and Web
service infrastructures.

4



<wsp:Policy xmlns:wsp=". . ." xmlns:wsse=". . .">

<wsp:ExactlyOne>

<wsp:All wsp:Preference="100">
<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

</wsse:SecurityToken>

<wsse:SecurityToken>

<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>

<wsse:Username>Claudio</wsse:Username>

</wsse:SecurityToken>

</wsp:All>

<wsp:All wsp:Preference="1">
<wsse:SecurityToken>

<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>

<wsse:SecurityToken>

<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>

<wsse:Username>Claudio</wsse:Username>

</wsse:SecurityToken>

</wsp:All>

<wsp:PolicyReference URI="#opts" />

</wsp:ExactlyOne>

</wsp:Policy>

(a)

<wsp:Policy xmlns:wsse=". . ." xmlns:ns=". . .">

<wsp:All wsu:Id="opts">
<wsse:SecurityToken>

<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>

<wsse:SecurityToken>

<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>

<wsse:Username>Sabrina</wsse:Username>

</wsse:SecurityToken>

</wsp:All>

</wsp:Policy>

(b)

Figure 2: A simple example of policy (a) and the corresponding referred policy (b)

• wsp:ExactlyOne requires that exactly one of its child elements be satisfied;

• wsp:OneOrMore requires that at least one of its child elements be satisfied.

Lack to specify a policy operator is equivalent to specify the wsp:All operator. Figure 2(a)
illustrates a simple example of policy stating that the access is granted if exactly one security token
among the following is provided: i) a Kerberos certificate and a UsernameToken with Username
Claudio, ii) an X509 certificate and a UsernameToken with Username Claudio, or iii) an X509

5



Assertions
Acceptable policy set X.509 Kerberos 3DES AES
Set 1 True False True False
Set 2 False True False True

Table 1: Tabular representation of Policy 1

Assertions
Acceptable type X.509 Kerberos
Usage Required Rejected

(a)

Assertions
Acceptable policy set X.509 Kerberos
Set1 True False

(b)

Table 2: Assertions with their Usage (a) and their representation as boolean predicates (b)

certificate and a UsernameToken with Username Sabrina. The third option corresponds to the
referred policy, called opts, illustrated in Figure 2(b).

2.1 Policy Assertion sets

A policy can be viewed as a table, where each column is an assertion and each row is a policy
assertion set that verifies the policy. For instance, consider the following policy:

Policy. Either only a certificate X.509 and 3DES encryption or a certificate Kerberos and AES
are required and all other combinations are invalid

Table 1 illustrates a tabular representation of Policy where the first row corresponds to the
alternative “X.509 and 3DES are required, all other combinations are invalid” and the second row
corresponds to the alternative “Kerberos and AES are required, all other combinations are invalid.”
A policy assertion set combines one or more assertions with their Usage. For instance, consider a
policy with two assertion types: X.509 and Kerberos (each assertion has no additional parameters).
The policy set illustrated in Table 2(a) states that X509 is Required and Kerberos is Rejected.

To simplify the analysis and processing of policy assertion sets, simple assertions can be viewed
as Boolean predicates, with Required usage resulting in True and Rejected usage resulting in
False. The example in Table 2(a) can then be described as shown in Table 2(b). It should be noted
that complex assertion types require more sophisticated logic and must be handled in a type-specific
manner. A simple assertion with Optional usage produces two boolean sets, where the first results
in a True value and the second one results in a False value. For instance, if X509 assertion has been
marked as Optional and Kerberos assertion as Required, the resulting sets are those illustrated
in Table 3.

6



Assertions
Acceptable policy set X.509 Kerberos
Set 1 True True
Set 2 False True

Table 3: Assertions as boolean predicates

<wsp:Policy xmlns:wsse=". . ." xmlns:wsp=". . .">

<wsp:All>

<wsse:SecurityToken wsp:Usage="wsp:Required">
<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

. . .

</wsse:SecurityToken>

<wsse:SecurityToken wsp:Usage="wsp:Required">
<wsse:TokenType>wsse:X509v3</wsse:TokenType>

. . .

</wsse:SecurityToken>

<Language Usage="Optional" Language="it"/>
</wsp:All>

</wsp:Policy>

Figure 3: Example of an ambiguous combination between attribute Usage and policy operator All

3 A critique of WS-Policy

The development of an access control system is a multi-phase approach that involves a modeling
phase [16]. This phase allows the definition of a formal model representing the policy and its
working, making it possible to define and prove security properties that systems enforcing the model
will enjoy [14]. Unfortunately, WS-Policy has been described only by means of XSD-Schemas and
tutorials and therefore a formal representation is completely missing. This informal description
is not enough to make WS-Policy a language without ambiguities and makes it interpretable and
subject to different implementations and uses. In the following, we will describe the ambiguities
that we have pointed out in WS-Policy, and we will propose and discuss possible solutions.

3.1 Ambiguous combination

Consider a policy where the policy operator All includes one or more assertions for which the
attribute Usage has value Optional. Here, an ambiguity arises because it is not clear whether the
Optional assertions should be considered or not. For instance, consider the policy illustrated in
Figure 3. This policy can be interpreted in two different ways:

Interpretation 1. All assertions must be satisfied, including the optional one. This is equiva-
lent to say that the semantics of the policy operator takes precedence over the semantics of
attribute Usage with the Optional value.

7



Interpretation 2. Only the first two assertions must be satisfied while the language assertion is
optional. This is equivalent to say that the semantics of attribute Usage with the Optional

value takes precedence over the semantics of the policy operator.

Suppose now that a request includes a valid X509 certificate and a valid Kerberos certificate
and does not provide a language. According to Interpretation 1, the access will be rejected; it will
be granted, otherwise. This means that, the assertions marked Optional have to be controlled
in accordance with the policy operator in which they are included. More precisely, we propose to
resolve this ambiguity as follows.

• All: the optional assertions must be ignored.
If the assertions marked Required are satisfied, it is not necessary to control the optional
assertions. Otherwise, if at least one Required assertion evaluates to False, the operator All
is not satisfied, and the optional assertions can be ignored.

• ExactlyOne: the Optional assertions must be checked if and only if the Required assertions
are not satisfied.

• OneOrMore: the Optional assertions must be checked if and only if at least one of the
Required assertions evaluate to False. In this case, the Optional assertions must be checked
until one of them evaluates to True.

The same happens when the combination between operator All and attribute Usage with value
Ignored is considered.

Another possible combination that seems meaningless is between element usePassword and
attribute Usage. In principle, it is possible to define an assertion where element usePassword has
an attribute Usage with value Rejected. In this case, the access is denied to all users that provide
a password. It is clear that this combination is nonsense and should not be allowed.

3.2 Ambiguous attributes

WS-Policy includes attributes that appear useless or whose meaning and semantics is ambiguous.

Usage=“Observed”. Assertions with value Observed for attribute Usage “will be applied to
all subjects, and requesters of the service are informed that the policy will be applied”. It is not
clear for what reason a requester should be informed that a policy is applied. Without this feature,
the value Observed has the same meaning of value Required.

Usage=“Ignored”. Assertions with value Ignored for attribute Usage must be processed and
then the results must be ignored. This specification seems useless.

Preference. It has no any practical effect and it seems unnecessary especially in the cases where
the assertions with which is associated are included in the All or OneOrMore operators.

8



(a)

<wsp:Policy Priority=". . .">

<All>

<MessageAge Usage="Required" Age="1000000"/>
<SecurityToken TokenType="X509Security" Usage="Required"
MatchType="Prefix">

<Claim>

<SubjectName> L=it </SubjectName>

</Claim>

</SecurityToken>

<Language Usage="Required" Language="it"/>
</All>

</wsp:Policy>

(b)

Figure 4: An example of an X.509 certificate (a) and an example of policy (b)

Match. This attribute can assume two values: exact and prefix.3 Value exact means that the
subject name of the certificate must be exactly the same of the value indicated in the assertion.
Value prefix means that the value specified in the assertion must be a prefix of the subject name
of the certificate. Consider now the simple certificate illustrated in Figure 4(a) and the policy
depicted in Figure 4(b). According to the WS-Policy specification, when attribute Match has value
prefix, the system has to control that the strings preceding the symbol “=” (equal) are the same.
We decide instead to apply a semantics similar to the semantics of operator like in SQL: in our
example, the SubjectName of the policy should then be a substring of the subject specified in the
certificate.

3.3 Missing features

We decide to extend the WS-Policy specification by adding the following features.

Priority. We decide to reuse attribute Priority to efficiently manage the error messages com-
municated to the user. For instance, suppose that all policies applicable to a given access request
evaluate to False. In this case, for each policy there is an exception message and the system has to
decide what exception should be communicate to the client. Attribute Priority can then be used
to establish an order between the exceptions raised by the policies: the exception associated with
the policy with higest Priority’s value is selected. If more than one policy have the same highest
value, then the selected exception is the exception raised by the the first policy that evaluates to
False.

3Note that there are assertions for which a third value, regexp, is allowed.

9



Figure 5: Architecture

Password. WS-Policy specification allows the specification of assertions stating that the access
can be granted if a given username (token of type UsernameToken) is provided and if the authenti-
cation mechanism consists in providing a password (UsePassword element). We add the possibility
to also restrict the access only if a given password is specified. To this purpose, we add element
Password whose content is in encrypted form and corresponds to the given password. Element
Password and UsePassword are mutually exclusive. An example of policy with element Password
is the following.

<SecurityToken wsp:Preference=". . ." wsp:Usage=". . ." wsu:id=". . .">

<TokenType>wsse:UsernameToken</TokenType>

<Claims>

<SubjectName MatchType=". . .">. . .</SubjectName>

<Password wsp:Usage=". . ." Type=". . .">. . .</Password>

</Claims>

</SecurityToken>

4 Specifications and Architectural Design

We describe the architecture we have developed in order to control access to Web services according
to given policies. The proposed architecture satisfies the following seven requirements.

• Modularity. The architecture is realized as a set of independent modules. This allows for
implementing and updating the different modules by different entities reducing, for example,
the development time.

10



• Policy language independent. The architecture is independent from the specific access control
language. This allows for re-using the architecture also if the policy language should change.

• Extensibility. The architecture can be easily extended. This is obtained by duplicating the
architecture’s modules thus resulting in additional levels of control.

• Re-Usability. The architecture’s modules can be reused and shared among different entities;
it makes the architecture generic and scalable.

• High performance. The architecture has a low time response to eventually support real-time
applications.

• Hardware and software independent. The architecture allows for distributing different modules
on different machines with different operating systems.

• Programming language independent. The modules’ developers can use the preferred program-
ming language without any restriction.

As shown in Figure 5, the architecture includes an Enforcer module that wraps up entirely
the computation of access permissions to individual Web services, returning, for each request, the
decision of whether the access should be granted or denied. Internally, the Enforcer is composed of
three main modules implemented as Web services:

• The Policy Decision Point (PDP) module receives an access request and returns a “yes” or
“no” decision.

• The Policy Evaluation Point (PEP) module interacts with the PAP that encapsulates the
information needed to identify the applicable policies. It then evaluates the request against
the applicable policies and returns the final decision to the PDP module.

• The Policy Administration Point (PAP) module retries the policies applicable to a given
access request and returns them to the PEP module.

When a client submits an access request to a service (1), the service redirects the request to the
PDP module (2). The request is then evaluated by the PEP (3) by first propagating the request
to the PAP module (4) and then by enforcing the applicable policies returned by the PAP module
(5). The PEP module returns the final decision to the PDP (6) that propagates it to the service.
If the access is denied, the PDP returns an exception string to the service that can decide either
to redirect the exception to the client as it is, or to process the exception and to retur to the client
a message conforming to the communication specifications.

Note that since PDP, PEP, and PAP modules have been implemented as Web services, their
use can be controlled by means of an instance of PDP-PEP-PAP. For instance, suppose that the
PAP module requires the authentication of the PEP module. In this case, the PAP module has to
instantiate a new PDP and at least a pair of PEP-PAP (see Figure 6).

In the remainder of this section, we briefly describe each of the main components of the Enforcer.

11



Figure 6: Recursive authentication schema

4.1 Policy Administration Point (PAP)

The PAP module is a policy repository that includes an administrative interface for inserting,
updating, and deleting policies. This interface can be implemented both locally and via web by
means of traditional components protocols or, also in this case, as a Web Service. Before inserting
or updating a policy, the PAP module verifies if it is well formed and, if the policy does not have an
external operator, the PAP module automatically adds the operator All. In this way, the semantics
of the policy does not change and we avoid problems that may occur in the enforcement phase.

The main purpose of this module is to retrieve the policies applicable to a given access request.
The PAP module then performs a search in the repository based on the received parameters (e.g.,
the service name and/or method name). The repository has been implemented as a relational
database and the search is performed by means of a SQL query on the database. Note that,
according to the WS-Policy specification, a policy may include references to external policies.
In this case, the PAP module returns a policy where the references have been replaced by the
corresponding policies.

4.2 Policy Evaluation Point (PEP)

The PEP module realizes the enforcement of the policies returned by the PAP module. The access
request is granted if at least one policy is satisfied; the access is denied otherwise. In this latter
case, the PEP module returns to the client an exception string indicating the error (see Section 5).
More precisely, the PEP module works as follows. First, it creates a SAXParser for analyzing
the policies and then iteratively enforces the policies. The enforcement phase can generate two
possible events: i) a policy is satisfied, the enforcement process terminates, and the access request
is granted; ii) a policy is not satisfied, an exception is raised and stored in a vector. After that all
policies have been evaluated and none of them is satisfied, the PEP module selects the exception
with the highest priority and sends it to the service.

12



<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://tempuri.org/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://tempuri.org/" xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/">
<s:element name="TemptureF">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="intF" type="s:int"/>
</s:sequence>

</s:complexType>

</s:element>

<s:element name="TemptureFResponse">
<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="TemptureFResult" type="s:string"/>
</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</types>

Figure 7: part of WSDL of TempureF method

4.3 Policy Decision Point (PDP)

The PDP module is the interface between the service and the Enforcer. The body of a SOAP
message is used for communicating the target service name and/or method name and the header
can be used for specifying additional information (e.g., information for authenticating the service
to the PDP). The PDP module instantiates one or more PEP module and each of them is based
on different policy repositories (PAPs). The interaction between each pair PEP-PAP can return
a different decision; the PDP module defines a policy for deciding how compute a final decision
based on the responses of each PEP. Different decision criteria could be adopted, each applicable
in specific situations. A natural and straightforward policy is the one stating that the PEP module
with the highest priority wins, or a majority policy can be adopted.

5 Policy enforcement

The discussion in the previous section already makes clear how policy enforcement works. Given
an access request, all applicable policies are evaluated and the request is granted if at least one
policy is satisfied. More precisely, to verify if an access request satisfies a policy, all the assertions
composing it have to be checked. To this purpose, we represent the set of all assertions composing
a policy as an evaluation tree, where the leaves of the tree are the assertions and the internal nodes

13



<wsp:Policy xmlns:wsse=". . ." xmlns:wssx=". . .">

<wsp:ExactlyOne>

<wsp:All wsp:Usage="wsp:Required" wsp:Preference="100">
<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

</wsse:SecurityToken>

<wssx:Language Usage="Required" Language="it"/>
</wsp:All>

<wsp:All wsp:Preference="1" wsp:Usage="wsp:Required">
<wsse:SecurityToken>

<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>

<wsse:Username>Claudio</wsse:Username>

</wsse:SecurityToken>

<wsse:SecurityToken>

<wsse:TokenType>wsse:X509</wsse:TokenType>

</wsse:SecurityToken>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

(a)

ExactlyOne

AllAll

language=itKerberos X509 Username=Claudio

(b)

Figure 8: An example of access policy (a) and the corresponding evaluation tree (b)

are the boolean operators (All, OneOrMore, ExactlyOne corresponding to and, or, and xor) used for
combining the assertions. The Enforcer (the PEP module) simplifies the evaluation tree evaluating
its leaves to true or false. Then, the evaluation tree is simplifies using the usual boolean laws for
true and false. To fix ideas and make the discussion clear, consider a simple Web service whose
purpose is to convert between degree Celsius and degree Fahrenheit scales. Figure 7 illustrates a
portion of the WSDL for the method that takes a temperature expressed in degree Celsius as input
(intF) and returns the temperature expressed in degree Fahrenheit (TemptureFResponse).

Consider also the access policy shown in Figure 8(a). The external operator ExactlyOne con-
tains two operators All that in turn contain the following assertions: i) a Kerberos certificate
and a specification of language; ii) an X509 certificate and an Username Token with Username

Claudio. Figure 8(b) illustrates the corresponding evaluation tree. The header of the access re-
quest in Figure 9(a) contains an X509 certificate and a Username Token with Username Claudio.
The evaluation tree is then simplified to true and the access is granted.

By contrast, Figure 9(b) illustrates an access request that does not satisfy the given policy.
In this case the SOAP header includes both an X509 certificate and a Kerberos certificate. The

14



<?xml version="1.0" encoding="utf-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<S:Header>

<wsse:Security xmlns:wsse= "http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:BinarySecurityToken ValueType="wsse:X509v3" EncodingType="wsse:Base64Binary">

MIIEZzCCA9CgAwIBAgIQEmtJZc0...
</wsse:BinarySecurityToken>

<wsse:UsernameToken >

<wsse:Username>Claudio</wsse:Username>

</wsse:UsernameToken>

</wsse:Security>

</S:Header>

<S:Body>

<!-- access request go here -->

</S:Body>

</S:Envelope>

(a)

<?xml version="1.0" encoding="utf-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<S:Header>

<wsse:Security xmlns:wsse= "http://schemas.xmlsoap.org/ws/2002/04/secext">
<wsse:BinarySecurityToken ValueType="wsse:X509v3" EncodingType="wsse:Base64Binary">

MIIEZzCCA9CgAwIBAgIQEmtJZc0...
</wsse:BinarySecurityToken>

<wsse:BinarySecurityToken ValueType="wsse:Kerberosv5TGT" EncodingType="wsse:Base64Binary">
JYTVjkvkjaOIJK76i7tuaeHJ...

</wsse:BinarySecurityToken>

</wsse:Security>

</S:Header>

<S:Body>

<!-- access request go here -->

</S:Body>

</S:Envelope>

(b)

Figure 9: Two examples of SOAP access requests

evaluation tree is simplified to false and the access is denied. The Enforcer has to report an
error indicating the reason for which the access request has been rejected. Such a error message
can specify, for example, that there is no a particular certificate or there is no a pair username-
password. The error messages are in XML format and should be conform to the XSD schema
shown in Figure 10. In our example, the Enforcer returns the error message depicted in Figure 11
stating that the access is rejected because the request does not specify a language associated with
the Kerberos certificate or a Username Token associated with an X509 certificate.

15



<?xml version="1.0" ?>

<xs:schema xmlns:targetNamespace="http://seth/errors" xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="All" type="Compositor"/>
<xs:element name="ExactlyOne" type="Compositor"/>
<xs:element name="OneOrMore" type="Compositor"/>
<xs:element name="Error" type="xs:string"/>
<xs:complexType name="Compositor">

<xs:group ref="CompositorContent" maxOccurs="unbounded"/>
</xs:complexType>

<xs:group name="CompositorContent">
<xs:choice>

<xs:element ref="All"/>
<xs:element ref="ExactlyOne"/>
<xs:element ref="OneOrMore"/>
<xs:element ref="Error" maxOccurs="unbounded"/>

</xs:choice>

</xs:group>

<xs:group name="root">
<xs:choice>

<xs:element ref="All"/>
<xs:element ref="ExactlyOne"/>
<xs:element ref="OneOrMore"/>

</xs:choice>

</xs:group>

<xs:element name="ErrorsReport" type="ErrorsReportExpression"/>
<xs:complexType name="ErrorsReportExpression">

<xs:group ref="root" minOccurs="0" maxOccurs="unbounded"/>
<xs:anyAttribute namespace="##any" processContents="lax"/>

</xs:complexType>

</xs:schema>

Figure 10: XSD Schema of message error

6 Conclusions

WS-Policy is a language for controlling access to Web services. Althought WS-Policy was designed
for that purpose, its development has not follow the traditional and well-know multi-phase devel-
opment process based on the definition of a security model that provides a formal representation
of the access control security policy and its working. The result is a language that is subject to
different interpretations and that presents some ambiguities. In this paper, we presented these
shortcomings and proposed a solution. We then described the architecture we have implemented
for controlling access to Web services.

We conclude by mentioning an interesting future direction for extending our work. Since the
modules of the Enforcer have been implemented as Web services, it is possible to integrate our
architecture with an UDDI register where the available PEP, PAP, and PDP can be registered.
A trusted PAP module can, for example, use the UDDI register for searching a particular PEP
satisfying given requirements.

16



<ErrorsReport>

<ExactlyOne>

<All>

<Error>Needed Language associated with a Kerberos Certificate</Error>

</All>

<All>

<Error>Needed UsernameToken associated with an X509 Certificate</Error>

</All>

</ExactlyOne>

</ErrorsReport>

Figure 11: Error string

Acknowledgments

We would like to thank Ernesto Damiani and Pierangela Samarati for helpful comments and sug-
gestions. This work was supported in part by the European Union within the PRIME Project
in the FP6/IST Programme under contract IST-2002-507591 and by the Italian MIUR within the
KIWI and MAPS projects.

References

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An XPath-based preference language for P3P.
In Proc. of the World Wide Web Conference, Budapest, Hungary, May 2003.

[2] B. Atkinson and G. Della-Libera et al. Web services security (WS-Security). http://msdn.

microsoft.com/library/en-us/dnglobspec/html/ws-security.asp%, April 2002.

[3] P. Bonatti and P. Samarati. A unified framework for regulating access and information release
on the web. Journal of Computer Security, 10(3):241–272, 2002.

[4] D. Box et al. Web services policy assertions language (WS-PolicyAssertions) version
1.1. http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policyassert%

ions.asp, May 2003.

[5] D. Box et al. Web Services Policy Attachment (WS-PolicyAttachment) version
1.1. http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policyattach%

ment.asp, May 2003.

[6] D. Box et al. Web Services Policy Framework (WS-Policy) version 1.1. http://msdn.

microsoft.com/library/en-us/dnglobspec/html/ws-policy.asp, May 2003.

[7] N. Brown and C. Kindel. Distributed Component Object Model Protocol, November 1996.

[8] R. Chinnici, M. Gudgin, J. Moreau, J. Schlimmer, and S. Weerawarana. Web services de-
scription language (wsdl) version 2.0 part 1: Core language. http://www.w3.org/TR/wsdl12,
March 2004.

17



[9] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Securing SOAP
E-services. International Journal of Information Security (IJIS), 1(2):100–115, February 2002.

[10] S. Feldman. The Changing Face of E-Commerce. IEEE Internet Computing, 4(3):82–84,
May/June 2000.

[11] J.A. Hine, W. Yao, J. Bacon, and K. Moody. An architecture for distributed OASIS services. In
Proc. of the IFIP/ACM International Conference on Distributed Systems Platforms nd Open
Distributed Processing, Hudson River Valley, New York, USA, April 2000.

[12] Java Remote Method Invocation (RMI). http://java.sun.com/j2se/1.3/docs/guide/rmi/
index.html.

[13] H. Koshutanski and F. Massacci. An access control framework for business processes for web
services. In Proc. of the 2003 ACM workshop on XML security, Fairfax, Virginia, November
2003.

[14] C.E. Landwehr. Formal models for computer security. ACM Computing Surveys, 13(3):247–
278, September 1981.

[15] OASIS eXtensible Access Control Markup Language (XACML) version 1.1. http://www.

oasis-open.org/committees/xacml/repository/cs-xacml-specific%ation-1.1.pdf.

[16] P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models, and mecha-
nisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and Design,
LNCS 2171. Springer-Verlag, 2001.

[17] Security assertion markup language (SAML) v1.1. http://www.oasis-
open.org/committees/download.php/3400/oasis-sstc-saml-1.1-pdf-xsd.zip.

[18] Simple object access protocol (soap). http://www.w3.org/TR/SOAP, May 2000.

[19] The CORBA Security Service Specification (Revision 1.2). ftp://ftp.omg.org/pub/docs/

ptc/98-01-02.pdf, January 1998.

[20] UDDI version 3.0.1. http://uddi.org/pubs/uddi_v3.htm.

[21] Web services security policy (WS-SecurityPolicy), December 2002. http://www-106.ibm.

com/developerworks/library/ws-secpol/.

18


