
Supporting Data Owner Control in IPFS Networks
Marco Abbadini∗, Michele Beretta∗, Sabrina De Capitani di Vimercati†, Dario Facchinetti∗,

Sara Foresti†, Gianluca Oldani∗, Stefano Paraboschi∗, Matthew Rossi∗, Pierangela Samarati†
∗ Università degli Studi di Bergamo, Italy – Email: firstname.lastname@unibg.it
† Università degli Studi di Milano, Italy – Email: firstname.lastname@unimi.it

Abstract—Decentralized storage architectures are emerging as
valid complementary solutions to cloud-based storage services.
InterPlanetary File System (IPFS) is one of the most well-
known distributed file storage protocols with wide adoption,
good performance, and a variety of applications built over it.
However, IPFS does not natively support data confidentiality
and its decentralized nature limits the ability of data owners to
maintain control on their resources and to force their deletion.

We propose Mix-IPFS, an approach that allows data owners
to maintain control on their resources uploaded to IPFS, guaran-
teeing their confidentiality and supporting secure deletion. Mix-
IPFS is based on AONT encryption, which has the nice property
of preventing decryption if the whole ciphertext is not available.
Data owners can permanently delete a resource by making a
small portion of its encrypted representation unavailable. Our
solution uses a virtual file system to guarantee transparency to
data owners (i.e., they can operate on plaintext resources). The
experimental evaluation shows that the overhead of our approach
is negligible (less than 2% for both upload and access operations).

Index Terms—InterPlanetary File System, Encryption, AONT

I. INTRODUCTION

Since their origins, Information and Communication Tech-
nologies have been characterized by a spectrum of options,
with systems controlled by a single or a few powerful com-
panies on one side, and open architectures that support the
activities of a multitude of actors on the other side. In several
domains, the evolution of technology has transformed scenar-
ios that saw a single or dominant actor into a landscape where
multiple companies and individuals can contribute. As tech-
nology evolves, components become more standardized, and
the cost required to offer services decreases, an opportunity
arises to build open services that replace what traditionally was
offered by a relatively small number of companies. Networks,
with their increasing efficiency and pervasiveness, have played
a significant role in this evolution.

A domain where this evolution may occur is cloud storage.
The role of cloud storage providers is significant and several
services are offered today by major players in the IT world
(e.g., Amazon S3 and Dropbox). Cloud storage services are
well-engineered and highly performant, even if they sometimes
exhibit critical failures [1]–[3]; the design of novel protocols
can extend the opportunities available to users and facilitate the
success of cloud storage solutions based on the participation
of a large number of entities.

Decentralized storage architectures are emerging as a robust
and scalable solution for storing resources. A solution that is
particularly interesting is InterPlanetary File System (IPFS), a

protocol that supports the dissemination of resources according
to the P2P paradigm and represents the largest and most
widely used Decentralized Web platform. In general, there is
a continuous interest in the design and development of IPFS,
as shown by the wide deployment and variety of applications
built over it [4]. The IPFS infrastructure has been deployed in
over 2700 Autonomous Systems, across 464k IP addresses,
covering 152 countries. IPFS is seeing widespread uptake
with more than 3M web client accesses and beyond 300k
unique nodes serving content in the network every week.
Although content retrieval in IPFS is slower than direct HTTP
access, delays are still reasonable for a number of use cases.
For instance, 75% of retrievals from Europe are under 2 s
(including looking up the content host and fetching a 0.5 MB
file). Moreover, the use of gateway caching can substantially
reduce retrieval latency, with 76% of the requests being served
in less than 250 ms.

A crucial aspect in the realization of any storage service,
especially when it offers network access to resources, is the
ability to protect resource confidentiality. By design, IPFS
focuses on reliability and integrity, but does not provide
confidentiality of resources, which should be protected by the
owner before storing them on IPFS. Also, being distributed
and replicated, IPFS does not guarantee permanent resource
deletion, and hence owners lose control on their resources.

In this paper, we present an approach, called Mix-IPFS,
that protects the confidentiality of resources and allows their
owners to maintain the control on the resources uploaded
to IPFS. Our proposal applies an All-Or-Nothing-Transform
(AONT) encryption mode, which ensures that the whole
encrypted resource is needed to reconstruct the corresponding
plaintext. Our solution is transparent and fully integrated
within the file system. We implement a virtual file system that
automatically: splits the resource in IPFS chunks; encrypts
each chunk; and uploads the encrypted resource chunks to
IPFS. Our file system locally stores a small portion (fragment)
of each encrypted resource, which is not stored in IPFS, to
enable permanent deletion. When the data owner wants to
delete a resource, the file system deletes the locally stored
fragment, making the reconstruction of the plaintext resource
impossible from the chunks stored in IPFS. Our solution offers
the opportunity to reduce economic costs using spare storage
space made available by third parties and, potentially, ease the
permanent-storage requirement. Our experiments show that the
overhead of Mix-IPFS on access times is limited (less than
2%) while not affecting performance.

Mix-IPFS’s source code is available at https://github.com/
unibg-seclab/ipfs-owner-control.

II. BASICS CONCEPTS

The two building blocks of our solution are the adoption of
IPFS for data storage and of AONT for data encryption.

IPFS. IPFS is an open-source distributed data storage network
that relies on a content-based P2P network [4], [5]. Each
IPFS node is identified by a PeerID. A resource stored in
IPFS is split in chunks of fixed size (by default 256 KiB),
each identified by a unique Content Identifier (CID). The
CID of a chunk contains the result of a cryptographic hash
function applied on the chunk, and other metadata. The chunks
composing a resource are organized in a Merkle Directed
Acyclic Graph (Merkle DAG), where the CID of each node
is obtained by hashing the CIDs of its children. The CID of
the root of the Merkle DAG is the resource CID. The use of a
cryptographic hash function and of the Merkle DAG structure
provides data immutability and self-certification. In fact, any
IPFS user can autonomously verify whether a resource has
been modified by checking the resource CID against the
resource content (i.e., a resource cannot be modified without
changing its CID). A Distributed Hash Table (DHT) maintains
the association between a CID and the PeerID(s) where the
corresponding resource is stored. To publish a new resource,
the IPFS node of the owner splits the resource in chunks,
builds the Merkle DAG, and pushes a new record for the
resource CID in the DHT, in association with its PeerID. To
retrieve a resource identified by a CID, an IPFS node retrieves
from the DHT the PeerIDs of the IPFS nodes providing the
CID, fetches the corresponding chunks, and verifies whether
the resource matches its CID. Once a resource has been
accessed, the IPFS node can make it accessible as a replica.
While the publication of a resource involves the P2P network,
the deletion of a resource is a local operation: if the resource
has been replicated it remains available.

AONT. AONT is an encryption mode that transforms a
plaintext resource into an encrypted resource guaranteeing
complete interdependence among all the bits of the encrypted
resource (i.e., each bit of the output depends on every bit
of the input). Complete mixing implies that missing even a
small portion of the ciphertext prevents reconstruction of the
plaintext resource, even if the encryption key is known. Among
the different proposals for implementing an AONT (e.g., [6]–
[10]) we leverage the Mixing structure described in [8], which
can benefit from the hardware accelerated implementation of
AES available in most modern CPUs and ensures protection
also in scenarios where users from which access should be
prevented know the encryption key.

III. MIX-IPFS

While using IPFS for resource storage and management
provides a number of advantages (e.g., data availability, limited
economic costs), its wide adoption might be restricted by the
loss of control by the owner, who cannot permanently delete

block

E E EE EE

E E E E

macroblock

AONT encrypted macroblock

step 0

step 1

step 2

Fig. 1: AONT mixing scheme

resources. To support resource deletion while maintaining
the advantages of IPFS, Mix-IPFS encrypts a resource with
AONT. Intuitively, using AONT, the resource owner can force
resource deletion by deleting a portion of the encrypted
resource. To maintain full control, this portion, which we call
golden fragment, is locally stored only at the owner side (i.e.,
not outsourced). Protection of cryptographic secrets is out of
the scope of our work, however existing works address this
problem (e.g., [11]). We now describe how Mix-IPFS uploads
and access resources in IPFS.

Upload. A resource that needs to be stored in the IPFS
network is first split into a set {M1, . . . ,Mm} of macroblocks,
whose size must be a power-of-2 of the size of the block
input to the symmetric block cipher at the basis of the
working of Mixing. Mixing encrypts each macroblock through
a sequence of symmetric encryption steps. At each step, the
block input to the block cipher is obtained combining bits
from different blocks resulting from the previous step. This
guarantees, after a well defined number of steps, complete
interdependence among the bits in the encrypted macroblock.
Figure 1 illustrates an example of encryption of a macroblock
composed of 4 = 22 blocks, using a block cipher E (e.g.,
AES) that takes as input a block of size 16 bytes. In the
first step, each block of the plaintext macroblock is separately
encrypted. In the second step, the four blocks input to the four
encryption operations E are obtained combining a different
quarter (e.g., the first 4 bytes of each block for the first E) of
each of the four output blocks of the previous step. In this way,
each bit in the four output blocks depends on each bit in the
four input plaintext blocks, as visible from the color-coding
in the figure. The number p of encryption steps necessary for
mixing a macroblock depends on the size of the macroblock,
the size b of the block, the number n of blocks mixed at each
step (4 in our example). In particular, p steps guarantee the
mixing of a macroblock of size np · b

n bytes. For instance,
a macroblock of size 256 KiB requires 8 steps of encryption
(i.e., 256 KiB = 48 · 16/4 bytes).

For each macroblock Mi, i = 1, . . . ,m, the owner locally
stores a small portion of arbitrary size of its encrypted rep-
resentation. The collection of all these portions of the mac-
roblocks forming a resource represents the golden fragment of

Mix Preparation

Resource

IPFS Network

Split

…

M1

M2

Mm

…

EM1

EM2

EMm

…

EM1

EM2

EMm

Local storage

Store

Store

…
2 1 m

EM1

EM2

EM3

EM4

EM5

EMm

RK

256 KiB 256 KiB 256 KiB

Fig. 2: Resource upload with Mix-IPFS

the resource. For each encrypted macroblock, the bits locally
stored are replaced in the macroblock with all 0s. While in
principle the owner can locally store any sequence of bits
from a macroblock, for simplicity, in our implementation we
store in the golden fragment the initial sequence of bits of
each macroblock. The resulting macroblocks are then uploaded
to the IPFS network. Note that the size of macroblocks and
IPFS chunks can be independently chosen by the resource
owner. However, it is convenient, in terms of access time, to
use macroblocks of the same size as IPFS chunks. Figure 2
illustrates the process of publishing a resource in an IPFS
network using our approach, assuming macroblocks of 256
KiB and using key RK for encryption.

Access. To access a resource, the process illustrated in Figure 2
is reverted. A user first retrieves the chunks composing the
resource identified by a given CID, and gets the locally stored
golden fragment. When the download of a chunk has been
completed, the user can replace the initial sequence of 0s with
the corresponding bits in the golden fragment. The macroblock
can then be decrypted (applying Mixing in decryption mode).
The overhead of Mixing is negligible compared to the applica-
tion of a simple direct AES encryption on the IPFS chunks (see
Section V). Also the size of the golden fragment is expected
to be negligible compared to the size of the chunks.

IV. MIX-IPFS ARCHITECTURE

We now illustrate the architectural design and working of
Mix-IPFS. In the design of Mix-IPFS, we aim at a system that
allows for transparency, that is, hiding to owners the adoption
of AONT encryption for protecting resources and of IPFS for
their storage. In the following, we will use the term user to
generically refer to the user of Mix-IPFS, which is the owner
uploading resources, and the user accessing them.

A. Architectural design

Our solution relies on a virtual file system that represents the
interface through which a user interacts with the IPFS network
to upload and access resources. Transparency is guaranteed
by providing the user with a directory in the file system,
listing resources stored in IPFS using our protection technique.
Mix-IPFS is then responsible for mediating store and access
requests (i.e., to transparently apply encryption/decryption
operations and to manage the golden fragment).

Mix-IPFS uses FUSE (Filesystem in USErspace) [12] as
a virtual file system, since it is a well-known Linux kernel
technology that allows unprivileged users to access virtual
file systems without the need to modify the kernel code
or load new modules. Also, FUSE has the advantage of
being compatible with all Unix and Unix-like systems (e.g.,
FreeBSD, macOS) as well as with Windows [13]. FUSE
consists of two modules: i) the FUSE Linux kernel module,
and ii) the libfuse library [14], which operates in userspace
and provides a reference set of APIs used by the Linux
kernel module to serve file system-related requests. Mix-IPFS
provides the APIs defined by libfuse necessary to handle
upload and access operations, work with symbolic links,
and modify resource metadata (i.e., file attributes including,
for example, access privileges, last accessed and modified
timestamps). Mix-IPFS has been designed with performance
in mind, aiming at minimizing access times. To this purpose,
Mix-IPFS organizes information about resources in a trie
data structure, which enhances performance of prefix-based
searches in the directory.

Before mounting the file system, Mix-IPFS authenticates
the user through the user master password (MP), which is also
used to derive a master key (MK) that is adopted for encrypting
Mix-IPFS metadata (Figure 3, step A). Mix-IPFS metadata
include the relevant structures needed for the functioning of
the virtual file system, such as attributes and names of files,
cryptographic keys used for resource encryption/decryption
(i.e., RK), and identifiers of the data stored in IPFS (i.e.,
CIDs of resources and reference to the golden fragments). If
authentication succeeds, Mix-IPFS loads (or initializes if it is
not already created) the file system metadata and, based on
them, mounts the virtual file system in a dedicated directory
(Figure 3, step B). The user can then interact with the directory
in the same way as with any other directory in the file system.
User interactions are however captured by the Linux kernel
and redirected to the FUSE module via the VFS (Virtual
Filesystem Switch) module. The FUSE module serves the
user’s requests through the libfuse library.

B. Management of upload and access operations

We now illustrate how the insertion of a resource into the
local directory of the user file system and the access to a
resource are managed by Mix-IPFS. Figures 3 and 4 show the

2 3

RK

Kernel
Userspace

VFS FUSE

libfuse
mount point

Mix-IPFS filesystem

Key derivation

Resource
upload

Decrypt
metadata

IPFS API
…

bafy…xnsa

MP
MK

Key generation
… bafy…k2t4

bafy…5oj4 CIDs1

A

6

B

5

User

4

Mix-IPFS modules

2

Fig. 3: Mount Mix-IPFS and upload a resource

working of the upload and access operations. The green (gray
in black and white printout) modules in the figures are specific
of Mix-IPFS.

Upload. When a user inserts a new resource into the local
directory (step 1 in Figure 3), VFS intercepts the request and
passes it to FUSE (step 2). The request is then forwarded
to Mix-IPFS (step 3). Mix-IPFS first encrypts the resource as
described in Section III, keeping the macroblock size the same
as IPFS chunks (256 KiB each) and keeping as golden frag-
ment the first 1024 bytes of each macroblock (step 4). Mix-
IPFS then asynchronously loads the encrypted macroblocks to
IPFS nodes and annotates the CIDs (calculated by IPFS) of
the encrypted macroblocks (step 5). Mix-IPFS finally maps the
name of the resource to a tuple of the form ⟨CID, out_loc⟩,
where CID is the CID of the resource and out_loc is a token
(e.g., a path on the local file system) necessary to retrieve the
golden fragment, and updates metadata (step 6). Note that the
information locally stored at the user-side to support access
to resources includes the golden fragment, the encryption key
RK used by Mixing, tuple ⟨CID, out_loc⟩, and the size of
the portion extracted from macroblocks to build the golden
fragment.

Access. When the user wants to access their resource (step 1
in Figure 4), VFS intercepts the request and passes it to FUSE
(step 2). The request is then forwarded to Mix-IPFS (step 3),
which reverses the protection applied when the resource has
been uploaded to IPFS. Mix-IPFS then first retrieves the
(locally stored) tuple ⟨CID, out_loc⟩ for the resource of
interest (steps 4 and 5) and downloads, from the IPFS network,
the resource with the identified CID (steps 6 and 7). Mix-
IPFS then operates in parallel on all the retrieved macroblocks:
it replaces the initial sequence of 0s with the corresponding
sequence of bits in the golden fragment and applies AONT
Mixing in decryption mode (step 8). The plaintext resource is
then returned to the user (steps 9–11).

Mix-IPFS easily manages also updates to resources by
combining the upload and access processes illustrated above.
In fact, any update to an IPFS chunk implies an update to its
CID, and hence to the CID of the resource. Delete operations,
as already noted, are managed by permanently removing the
golden fragment(s) of the resource.

…

2 3 Kernel
Userspace

VFS FUSE

libfusemount point

Mix-IPFS filesystem

Key derivation

Resource
access

Decrypt
metadata

IPFS API
…

MP
MK

11

A
B

User

Mix-IPFS modules

10

8

9

7

6

4
bafy…xnsa
bafy…k2t4

bafy…5oj4 CIDs5
1

RK

2

Fig. 4: Access a resource in Mix-IPFS

V. EXPERIMENTAL EVALUATION

To assess the performance overhead introduced by Mix-
IPFS, we conducted a wide experimental analysis comparing
access times to files stored in IPFS in plaintext, when using
a traditional block cipher, and when using Mix-IPFS (Sec-
tion V-A). We also analyzed the local storage overhead due
to the golden fragment and additional file system metadata
(Section V-B).

For the experimental evaluation, we used a machine with
Ubuntu 22.04 (kernel 5.19), IPFS 0.19.1, libfuse 3.10.5,
and equipped with an AMD Ryzen 9 7900X, 64 GB of RAM,
and 2 TB of SSD. The machine is located in southern Europe
(note that IPFS performance varies depending on the region,
as shown in [4]). The resources used for our experiments
have been replicated on different public IPFS nodes.1 In our
experimental evaluation, we used 10 different IPFS nodes to
test the benefit of the parallelization of our Mixing, which
leverages the distributed nature of IPFS. We considered IPFS
chunks of 256 KiB and assumed to locally store in the golden
fragment 1 KiB for each macroblock.

A. Latency

To analyze the latency of Mix-IPFS, which represents a
crucial aspect when accessing resources, we consider two
scenarios that differ in how resources are protected: 1) encryp-
tion through AES in CBC and CTR mode; and 2) encryption
through Mixing. Note that, in our experiments, AES operates
at the macroblock level, to leverage the same parallelism
implemented in our solution and enable a fair comparison
among the considered scenarios. We analyzed separately the
overhead introduced by the protection techniques of these two
scenarios when uploading and when accessing a resource. The
overhead is computed with respect to the case where resources
are stored in IPFS in plaintext, which is our baseline. The
results illustrated in the following have been obtained as the
average of 20 runs. The colored areas in the figures represents
the standard deviation obtained in the experimental evaluation.

Upload. The upload of a resource can be considered as
operating in two independent steps: i) protect the resource,
and ii) publish the protected resource on IPFS. Since IPFS

1List of public IPFS nodes: https://ipfs.github.io/public-gateway-checker/

natively implements the second step, and the size of the
encrypted resource does not change significantly, the overhead
introduced when uploading a resource only depends on the
performance of the protection technique adopted (i.e., AES in
CBC and CTR mode or Mixing). Considering a resource of
size between 1 KiB and 106 KiB, Figure 5a illustrates the
average overhead, computed as the ratio between the time
necessary to protect the resource and our baseline (i.e., the
time spent to publish the resource on IPFS), when using AES
in CBC and CTR mode and when using Mixing. As expected,
the overhead increases with the size of the resource, since the
time spent for encrypting a resource depends on its size, while
IPFS publication is less susceptible to it. We note, however,
that the overhead of Mixing is similar to the overhead of
traditional AES encryption (2% overhead for 1GB resources),
while providing higher protection guarantees.

Access. Similarly to the upload operation, the access to a
resource operates in two steps: i) retrieve and download from
IPFS the chunks composing the resource, which is natively
implemented in IPFS, and ii) remove the protection layer.
Considering a resource of size between 1 KiB and 106 KiB,
Figure 5b illustrates the average overhead, computed as the
ratio between the time necessary to remove the protection
layer (i.e., AES in CBC and CTR mode or Mixing), and the
time spent to retrieve the resource (baseline). The overhead
increases with the size of the resource, but the increase is
less steep compared to what observed for upload operations
in Figure 5a. This smoother trend is due to the fact that IPFS
takes longer to fetch large resources (step i) above), as shown
in Figure 6b that reports the average absolute time necessary
to download a resource varying its size. Figure 5b confirms
that our approach is competitive with AES also for access
operations. For small resources, which cannot take advantage
of parallelization since they fit in one macroblock, we observe
a higher cost when using Mixing compared to AES. The
performance overhead is however limited (0.95% compared to
AES in CBC mode, 0.85% compared to AES in CTR mode).
This is confirmed by Figure 6a, showing the average absolute
time for removing the protection layer (step ii) above).

B. Storage

We also analyze the additional space needed for the adop-
tion of Mix-IPFS (i.e., the space required for storing the golden
fragment and the file system metadata).

Golden fragment. Assuming to locally store 1 KiB for each
macroblock and to use IPFS chunks (and macroblocks) of
256 KiB, Figure 7a illustrates the overhead, computed as the
ratio between the size of the golden fragment and the size
of the (plaintext) resource, varying the size of the resource
between 1 KiB and 106 KiB. As expected, the overhead due
to the local storage of the golden fragment is higher for small
resources, especially for resources having size smaller than
256 KiB. In fact, Mix-IPFS applies padding to reach a size
that is a multiple of the macroblock size before encrypting
the resource. For instance, considering a resource of size 20

100 101 102 103 104 105 106

File size [KiB]
10−6

10−5

10−4

10−3

10−2

10−1

Ov
er

he
ad

AES (CBC) AES (CTR) Mix

(a) Upload overhead

100 101 102 103 104 105 106

File size [KiB]
10−6

10−5

10−4

10−3

10−2

10−1

Ov
er

he
ad

AES (CBC) AES (CTR) Mix

(b) Access overhead

Fig. 5: Average overhead of Mixing and of AES in uploading
and accessing a resource, varying the size of the resource

100 101 102 103 104 105 106

File size [KiB]

10−1

100

101

102

103

Ti
m

e
[m

s]

AES (CBC) AES (CTR) Mix

(a) Decryption time

100 101 102 103 104 105 106

File size [KiB]

102

103

104

Ti
m

e
[m

s]

AES (CBC) AES (CTR) Mix

(b) Download time

Fig. 6: Average absolute times for accessing a resource,
varying the size of the resource

100 101 102 103 104 105 106

File size [KiB]

10−2

10−1

100

Ov
er

he
ad

(a) Golden fragment overhead

2.0e3 4.0e3 6.0e3 8.0e3 10.0e3
Total data size [KiB]

0.9e-3

1.0e-3

1.1e-3

1.2e-3

1.3e-3

Ov
er

he
ad

(b) Metadata overhead

Fig. 7: Space overhead of the golden fragment and of the file
system metadata

KiB, the overhead of the golden fragment is 1/20. The figure
shows that the storage overhead quickly approaches constant
value 1/256 (i.e., 0.39% of the resource size).

Metadata. Figure 7b illustrates the overhead, computed as the
ratio between the on-disk size of file system metadata and the
size of the plaintext resources handled by Mix-IPFS, varying
the overall size of plaintext resources between 103 KiB and
104 KiB. The overhead remains extremely low when managing
small sets of resources (less than 0.14% in our experiments),
and decreases as the overall size of resources grows.

VI. RELATED WORK

The problem of protecting data confidentiality in modern
P2P networks and decentralized storage networks has been
recently addressed by several approaches (e.g., Freenet [15],
Filecoin [16], Arweave [17], and Sia [18]). While presenting

similarities with Mix-IPFS, these approaches do not allow the
resource owners to be in control of resource deletion. The
work in [19] addresses the problem of scheduling the release
of confidential data in a decentralized network, even when
some of the nodes may not follow the P2P protocol. Contrary
to our scenario, this solution relies on economic incentives and
penalties to guarantee persistent storage to the client.

The use of AONT for providing data confidentiality in
decentralized systems has been recently addressed, with ap-
proaches that enforce client-side encryption in AONT mode.
The proposals in [20], [21] introduce a model based on
AONT and data replication for providing both security and
availability guarantees to resources stored in a decentralized
cloud storage. SAFE network [22], [23] is a decentralized
cloud storage network that adopts convergent encryption for
data protection. These solutions, while effective in providing
data confidentiality, differ from our approach since they rely on
the nodes in the network for enforcing resource deletion, which
is therefore not fully under the owner control. Similarly, the
adoption of linear network coding aims at protecting resources
stored in a distributed cloud storage by splitting each resource
into multiples fragments allocated at different nodes [24]. The
adoption of a scheme similar to secret sharing for splitting
resources provides data confidentiality, but resource deletion
is not under the owner control.

The problem of providing a file system that transpar-
ently manages security mechanisms has been widely stud-
ied (e.g., [25], [26]). Among existing solutions, EncFS [25]
offers an encrypted userspace file system relying on FUSE.
OramFS [26] is instead an encrypted (and optionally authenti-
cated) Oblivious RAM file system. Differently from our pro-
posal, these approaches do not adopt AONT encryption mode
to guarantee strong interdependency, and are not designed to
operate on P2P networks.

Another line of works related to our proposal is aimed to
provide confidentiality of outsourced data (e.g., [27], [28]).
The approach in [29] provides protection of confidential infor-
mation by maintaining a portion of the data at the owner side.
This solution completely departs from encryption, assuming
that what is sensitive is the association among data.

VII. CONCLUSIONS

We proposed Mix-IPFS, an approach that aims at protecting
confidentiality of data stored in IPFS, and at enabling owners
to remain in control of their resources and to force delete
operations over them. Data confidentiality is guaranteed by
applying AONT encryption at the owner-side, and the control
over delete operations is preserved by locally storing a small
fragment of the encrypted resource. Being integrated in the
file system, Mix-IPFS guarantees transparency to users. Our
experimental evaluation confirms the limited overhead of Mix-
IPFS, both in terms of access time and of local storage space.

ACKNOWLEDGMENT

This work was supported in part by the EC under projects
GLACIATION (101070141) and MARSAL (101017171), by

the Italian MUR under PRIN project POLAR, and by projects
GRINS (PE00000018) and SERICS (PE00000014) under the
NRRP MUR program funded by the EU – NGEU.

REFERENCES

[1] M. Rosemain and R. Satter, “Millions of websites offline after
fire at French cloud services firm,” https://www.reuters.com/article/
us-france-ovh-fire-idUSKBN2B20NU, 2021.

[2] D. Coldewey, “Cloudflare DNS goes down, taking a large
piece of the internet with it,” https://techcrunch.com/2020/07/17/
cloudflare-dns-goes-down-taking-a-large-piece-of-the-internet-with-it,
2020.

[3] E. Mathews, “Amazon cloud outage hits major web-
sites, streaming apps,” https://www.reuters.com/article/
amazon-com-outages-idCAKBN2IM1U0, 2021.

[4] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of IPFS: A storage layer
for the decentralized web,” in Proc. of SIGCOMM, August 2022.

[5] J. Benet, “IPFS-content addressed, versioned, P2P file system,” Protocol
Labs, Tech. Rep., 2014.

[6] R. L. Rivest, “All-or-nothing encryption and the package transform,” in
Proc. of FSE, January 1997.

[7] M. Bellare and P. Rogaway, “Optimal asymmetric encryption,” in Proc
of EUROCRYPT, May 1994.

[8] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, M. Rosa,
and P. Samarati, “Mix&Slice: Efficient access revocation in the cloud,”
in Proc. of ACM CCS, October 2016.

[9] ——, “Mix&Slice for efficient access revocation on outsourced data,”
IEEE 2TDSC, 2023, Early Access.

[10] V. Boyko, “On the security properties of OAEP as an All-or-Nothing
transform,” in Proc. of CRYPTO, 1999.

[11] M. Abbadini, M. Beretta, D. Facchinetti, G. Oldani, M. Rossi, and
S. Paraboschi, “Lightweight cloud application sandboxing,” in Proc. of
CLOUDCOM, 2023.

[12] FUSE Project, “FUSE: The Linux kernel documentation,” https://www.
kernel.org/doc/html/next/filesystems/fuse.html, 2023.

[13] WinFsp, “Windows file system proxy,” https://winfsp.dev/, 2023.
[14] FUSE Project, “libfuse: Reference implementation for communicating

with the fuse kernel module,” https://github.com/libfuse/libfuse, 2023.
[15] The Freenet Project, “Freenet,” https://freenetproject.org/, 2023.
[16] Filecoin, “Filecoin,” https://filecoin.io/, 2023.
[17] Arweave, “Meet Arweave: Permanent information storage,” https://www.

arweave.org/, 2023.
[18] Sia, “Sia, decentralized data storage,” https://sia.tech/, 2023.
[19] E. Bacis, D. Facchinetti, M. Guarnieri, M. Rosa, M. Rossi, and S. Para-

boschi, “I told you tomorrow: Practical time-locked secrets using smart
contracts,” in Proc. of ARES, August 2021.

[20] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, M. Rosa,
and P. Samarati, “Securing resources in decentralized cloud storage,”
IEEE TIFS, vol. 15, no. 1, December 2020.

[21] ——, “Dynamic allocation for resource protection in decentralized cloud
storage,” in Proc. of GLOBECOM, December 2019.

[22] D. Irvine, “Maidsafe distributed file system,” MaidSafe, Tech. Rep.,
2010.

[23] G. Paul, F. Hutchison, and J. Irvine, “Security of the MaidSafe vault
network,” in Wireless World Research Forum Meeting 32, May 2014.

[24] M. Sipos, F. H. Fitzek, D. E. Lucani, and M. V. Pedersen, “Distributed
cloud storage using network coding,” in IEEE CCNC, January 2014.

[25] V. Gough, “EncFS: an Encrypted Filesystem for FUSE,” https://vgough.
github.io/encfs/, 2023.

[26] Kudelski Security, “OramFS: ORAM filesystem written in Rust,” https:
//github.com/kudelskisecurity/oramfs, 2023.

[27] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Encryption policies for regulating access to outsourced
data,” ACM TODS, vol. 35, no. 2, April 2010.

[28] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani,
S. Paraboschi, M. Rossi, and P. Samarati, “Multi-dimensional indexes
for point and range queries on outsourced encrypted data,” in Proc. of
GLOBECOM, December 2021.

[29] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Para-
boschi, and P. Samarati, “Keep a few: Outsourcing data while maintain-
ing confidentiality,” in Proc. of ESORICS, September 2009.

