
94 Int. J. Computational Science and Engineering, Vol. 3, No. 2, 2007

Copyright © 2007 Inderscience Enterprises Ltd.

Access control policies and languages

Sabrina De Capitani di Vimercati*, Sara Foresti
and Pierangela Samarati
DTI, Università degli Studi di Milano,
26013 Crema, Italy
E-mail: decapita@dti.unimi.it E-mail: foresti@dti.unimi.it
E-mail: samarati@dti.unimi.it
Website: http://www.dti.unimi.it/decapita
Website: http://www.dti.unimi.it/samarati
*Corresponding author

Sushil Jajodia
George Mason University,
Fairfax, VA 22030-4444, USA
E-mail: jajodia@gmu.edu
Website: http://csis.gmu.edu/faculty/jajodia.html

Abstract: Access control is the process of mediating every request to data and services
maintained by a system and determining whether the request should be granted or denied.
Expressiveness and flexibility are top requirements for an access control system together with,
and usually in conflict with, simplicity and efficiency. In this paper, we discuss the main
desiderata for access control systems and illustrate the main characteristics of access control
solutions.

Keywords: authorisation hierarchies; positive and negative authorisations; attribute-based
access control.

Reference to this paper should be made as follows: De Capitani di Vimercati, S., Foresti, S.,
Samarati, P. and Jajodia, S. (2007) ‘Access control policies and languages’, Int. J. Computational
Science and Engineering, Vol. 3, No. 2, pp.94–102.

Biographical notes: Sabrina De Capitani di Vimercati is an Associate Professor at the
Department of Information Technology of the University of Milan. She received her Laurea
and PhD Degrees both in Computer Science from the University of Milan in 1996 and 2001,
respectively. Her research interests are in the area of information security, databases, and
information systems. She has been an International Fellow in the Computer Science Laboratory
at SRI, CA, USA. She is co-recipient of the ACM-PODS’99 Best Newcomer Paper Award.

Sara Foresti received the Laurea Degree in Computer Science from the University of Milan, Italy
in 2005. From April 2005, she has been a Research Collaborator at the Information Technology
Department, University of Milan, Italy. Her research interests are in the area of data security and
privacy.

Pierangela Samarati is a Professor at the Department of Information Technology of the
University of Milan. Her main research interests are in data and application security, information
system security, access control policies, models and systems, and information protection in
general. She has participated in several projects involving different aspects of information
protection. On these topics she has published more than 100 refereed technical papers in
international journals and conferences. She is co-recipient of the ACM-PODS’99 Best Newcomer
Paper Award.

Sushil Jajodia is University Professor, BDM International Professor of Information Technology,
and the Director of Center for Secure Information Systems at the George Mason University,
Fairfax, Virginia. His research interests include information security, temporal databases, and
replicated databases. He has authored five books, edited 22 books, and published more than
250 technical papers in the refereed journals and conference proceedings.

 Access control policies and languages 95

1 Introduction
One of the most important features of today’s systems is the
protection of their resources (i.e., data and services) against
unauthorised disclosure (secrecy) and intentional or
accidental unauthorised changes (integrity), while at the
same time ensuring their accessibility by authorised users
whenever needed (no denials-of-service) (Samarati and
De Capitani di Vimercati, 2001). Considerable effort is
being devoted to addressing various aspects of secrecy,
integrity, and availability. Although, historically,
confidentiality has received the most attention, probably
because of its importance in military and government
applications.

One of the main security services to achieve data
protection is access control. Access control is the act of
ensuring that a user accesses only what she is authorised to
and no more. Significant research has focused on achieving
more expressive and powerful access control systems.
The development of an access control system requires the
definition of the regulations according to which access is to
be controlled and their implementation as functions
executable by a computer system. This development process
is usually carried out with a multi-phase approach based on
the concepts of security policy, security model and security
mechanism. A policy defines the (high-level) rules
according to which access control must be regulated.
A policy is then accompanied by a language for the
specification of the rules. An access control model provides
a formal representation of the access control security policy
and its working. The formalisation allows the proof of
properties on the security provided by the access control
system being designed (Landwehr, 1981). A security
mechanism defines the low level (software and hardware)
functions that implement the controls imposed by the policy
and formally stated in the model.

The traditional access control models used for
describing the enforcement of confidentiality are based on
the definition of access control rules, called authorisations,
which are of the form 〈subject, object, operation〉. These
authorisations specify which operations can be performed
on objects by which subjects. However, in today’s systems
the definition of an access control model is complicated by
the need to formally represent complex policies, where
access decisions depend on the application of different rules
coming, for example, from law practices, and organisational
regulations. A security policy must then combine all the
different regulations to be enforced (Wijesekera and Jajodia,
2003) and, in addition, must consider all possible additional
threats due to the use of computer systems. Given the
complexity of the scenario, the simple authorisation triple
〈subject, object, operation〉 is no more sufficient.

The remainder of this paper is organised as follows.
Section 2 discusses the main features supported by modern
access control policies and models. Section 3 presents
recent approaches in the area of access control languages.
Section 4 introduces recent solutions basing the access
control decisions on the evaluation of users’ attributes rather

than on their identity. Finally, Section 5 concludes the
paper.

2 Policies and models
The access control service provided by the computer system
should be expressive and flexible enough to accommodate
all the different requirements that may need to be expressed,
while at the same time be simple both in terms of use
(so that specifications can be kept under control) and
implementation (so to allow for its verification). In the
following, we discuss the main features that an access
control service should support.

2.1 Conditions and supports of abstractions
Even early approaches to authorisation specifications
allowed conditions to be associated with authorisations
to restrict their validity. Conditions can make the
authorisation validity dependent on the satisfaction
of some system predicates (system-dependent conditions)
like the time or location of access. For instance, a condition
can be associated with the bank-clerks’ authorisation to
access accounts, restricting its application only from
machines within the bank building and in working hours.
Conditions can also constrain access depending on
the content of objects on which the authorisation is
defined (content-dependent conditions). Content-dependent
conditions can be used simply as a way to determine
whether or not an access to the object should be granted or
as way to restrict the portion of the object that can be
accessed (e.g., a subset of the tuples in a relation).
This latter option is useful when the authorisation object has
a coarser granularity than the one supported by the data
model (Date, 1995). Other possible conditions that can be
enforced can make an access decision depend on accesses
previously executed (history dependent conditions).

Another feature usually supported by today
systems is the management of abstractions (groups of
subjects and objects) in the authorisation specification.
Even early approaches supported the specification and
use within authorisations of user groups (e.g., Employees,
Programmers, Consultants). Groups can be nested and
need not be disjoint. Figure 1 illustrates an example
of user-group hierarchy. Support of groups greatly
simplifies management of authorisations, since a single
authorisation granted to a group can be enjoyed by
all its members. Later efforts moved to the support of
groups on all the elements of the authorisation triple
(i.e., subject, object, and operation), where, typically,
groups are abstractions hierarchically organised. For
instance, in an operating system the hierarchy can reflect the
logical file system tree structure, while in an object-oriented
system it can reflect the class (is-a) hierarchy. Figure 2
illustrates an example of object hierarchy. Even operations
can be organised hierarchically, where the hierarchy may
reflect an implication of privileges (e.g., write is more

96 S. De Capitani di Vimercati, S. Foresti, P. Samarati and S. Jajodia

powerful than read (Rabitti et al., 1991)) or a grouping of
sets of privileges (e.g., a ‘writing privileges’ group can be
defined containing write, append, and undo (Shen and
Dewan, 1992)). These hierarchical relationships can be
exploited

• to support preconditions on accesses (e.g., in Unix
a subject needs the execute privilege on a directory to
access the files within it), or

• to support authorisation implication, that is,
authorisations specified on an abstraction apply to all
its members.

Figure 1 An example of user-group hierarchy

Figure 2 An example of object hierarchy

Support of abstractions with implications provides a short
hand way to specify authorisations, clearly simplifying
authorisation management. As a matter of fact, in most
situations the ability to execute privileges depends on the
membership of users into groups or objects into collections:
translating these requirements into basic triples of the form
〈user, object, operation〉 that then have to be singularly
managed is a considerable administrative burden, and makes
it difficult to maintain both satisfactory security and
administrative efficiency.

2.2 Positive and negative authorisations

Although there are cases where abstractions can work just
fine, many will be the cases where exceptions
(i.e., authorisations applicable to all members of a group but
few) will need to be supported. This observation has
brought to the combined support of both positive and
negative authorisations. Traditionally, positive and negative
authorisations have been used in mutual exclusion
corresponding to two classical approaches to access control,
namely:

• Closed policy. Authorisations specify permissions for
an access. The closed policy allows an access if there
exists a positive authorisation for it, and denies it
otherwise.

• Open policy. (Negative) Authorisations specify denials
for an access. The open policy denies an access if there
exists a negative authorisation for it, and allows it
otherwise.

The open policy has usually found application only in those
scenarios where the need for protection is not strong and by
default access is to be granted. Most systems adopt the
closed policy, which, denying access by default, ensures
better protection; cases where information is public by
default are enforced with a positive authorisation on the root
of the subject hierarchy (e.g., Public).

The combined use of positive and negative
authorisations has been adopted in recent approaches as a
convenient way to support exceptions. To illustrate, suppose
we wish to grant an authorisation to all members of a group
composed of 1000 users, except to one specific member
Alice. In a closed policy approach, we would have to
express the above requirement by specifying a positive
authorisation for each member of the group except
Alice.1 However, if we combine positive and negative
authorisations we can specify the same requirement by
granting a positive authorisation to the group and a negative
authorisation to Alice.

The combined use of positive and negative
authorisations brings now to the problem of how the two
specifications should be treated:

• What if for an access no authorisation is specified?
(incompleteness)

• What if for an access there are both a negative
and a positive authorisation? (inconsistency)

Completeness can be easily achieved by assuming that one
of either the open or closed policy operates as a default, and
accordingly access is granted or denied if no authorisation is
found for it. Note that the alternative of explicitly requiring
completeness of the authorisations is too heavy and
complicates administration.

Conflict resolution is a more complex matter
and does not usually have a unique answer (Jajodia et al.,
2001b; Lunt, 1988). Rather, different decision criteria
could be adopted, each applicable in specific situations,
corresponding to different policies that can be implemented.
Examples of different conflict resolution policies are given
below.

Denials-take-precedence. Negative authorisations are
always adopted when a conflict occurs (it satisfies the
‘fail safe principle’). In other words, the principle says that
if we have one reason to authorise an access, and another to
deny it, then we deny it.

Most-specific-takes-precedence. A natural and
straightforward policy is the one stating that “the most
specific authorisation should be the one that prevails”;
after all this is what we had in mind when we introduced
negative authorisations in the first place (our example about
Alice). Although the most-specific-takes-precedence
principle is intuitive and natural and likely to fit in many
situations, it is not enough. As a matter of fact, even if we
adopt the argument that the most specific authorisation
always wins (and this may not always be the case) it is not
always clear what more specific is:

 Access control policies and languages 97

• What if two authorisations are specified on
non-disjoint, but non-hierarchically related groups
(e.g., NWard1 and Temporary in Figure 1)?

• What if for two authorisations the most specific
relationship appears reversed over different domains?
For instance, consider authorisations (Doctors, read+,
Mail) and (Medical_Staff, read–, Personal); the first has
a more specific subject, while the second has a more
specific object (see Figures 1 and 2).

Most-specific-along-a-path-takes-precedence. This policy
considers an authorisation specified on an element x as
overriding an authorisation specified on a more general
element y only for those elements that are members of y
because of x. Intuitively, this policy takes into account the
fact that, even in the presence of a more specific
authorisation, the more general authorisation can still be
applicable because of other paths in the hierarchy.
For instance, consider the group hierarchy in Figure 1 and
suppose that for an access a negative authorisation is
granted to Medical_Staff while a positive authorisation is
granted to Nurses. What should we decide for Carol?
On the one side, it is true that Nurses is more specific than
Medical_Staff; on the other side, however, Carol belongs to
Temporary, and for Temporary members the negative
authorisation is not overridden. While the most-specific-
takes-precedence policy would consider the authorisation
granted to Medical_Staff as being overridden for Carol, the
most-specific-along-a-path considers both authorisations as
applicable to Carol. Intuitively, in the most-specific-along-
a-path policy, an authorisation propagates down the
hierarchy until overridden by a more specific authorisation
(Fernandez et al., 1994).

Priority level. The most specific argument does not always
apply. For instance, an organisation may want to be able to
state that consultants should not be given access to private
projects, no exceptions allowed. However, if the most
specific policy is applied, any authorisation explicitly
granted to a single consultant will override the denial
specified by the organisation. To address situations like this,
some approaches proposed adopting explicit priorities;
however, these solutions do not appear viable as the
authorisation specifications may result not always clear.

Positional. Other approaches (e.g., Shen and Dewan, 1992)
proposed making authorisation priority dependent on
the order in which authorisations are listed (i.e., the
authorisation that is encountered first applies). This
approach, however, has the drawback that granting an
authorisation requires inserting the authorisation in the
proper place in the list. Beside the administrative burden
put on the administrator (who, essentially, has to
explicitly solve the conflicts when deciding the order),
specifying authorisations implies explicitly writing the ACL
associated with the object, and may impede delegation of
administrative privileges.

Grantor- or time-dependent. Other possible ways of
defining priorities can make the authorisation’s priority
dependent on the time at which the authorisations was
granted (e.g., the more recent authorisations prevails) or on
priorities between the grantors. For instance, authorisations
specified by an employee may be overridden by those
specified by her supervisor; the authorisations specified by
an object’s owner may override those specified by other
users to whom the owner has delegated administrative
authority.

As it is clear from this discussion, different approaches can
be taken to deal with positive and negative authorisations.
Also, if it is true that some solutions may appear more
natural than others, none of them represents ‘the perfect
solution’. Whichever approach we take, we will always find
one situation for which it does not fit. Also, note that
different conflict resolution policies are not mutually
exclusive. For instance, one can decide to try solving
conflicts with the most-specific-takes-precedence policy
first, and apply the denials-take-precedence principle on the
remaining conflicts (i.e., conflicting authorisations that are
not hierarchically related).

The support of negative authorisations does not come
for free, and there is a price to pay in terms of authorisation
management and less clarity of the specifications.
However, the complications brought by negative
authorisations are not due to negative authorisations
themselves, but to the different semantics that the presence
of permissions and denials can have, that is, to the
complexity of the different real world scenarios and
requirements that may need to be captured. There is
therefore a trade-off between expressiveness and simplicity.
For this reason, most current systems adopting negative
authorisations for exception support impose specific
conflict resolution policies, or support a limited form of
conflict resolution (e.g., see the Apache server
(http://www.apache.org/docs-2.0/misc/tutorials.html), where
authorisations can be positive and negative and an ordering
can be specified dictating how negative and positive
authorisations are to be interpreted). More recent
approaches are moving towards the development of flexible
frameworks with the support of multiple conflict resolution
and decision policies.

3 Languages for access control
The specification of the access control policies requires the
use of a language to specify the access control rules as well
as the possible assertions and properties of the different
entities of the system (e.g., subjects/objects abstractions or
properties) (Samarati and De Capitani di Vimercati, 2001).

We now describe some desiderata that an expressive and
powerful access control language should satisfy. We then
present a flexible and powerful access control language that
addresses these desiderata (Jajodia et al., 2001b).

98 S. De Capitani di Vimercati, S. Foresti, P. Samarati and S. Jajodia

• An access control language should be simple and
expressive. It should be simple to make easy the
management task of specifying and maintaining the
security specifications. It should be expressive to make
it possible to specify in a flexible way different
protection requirements that may need to be imposed
on different objects.

• An access control language should support access rules
(authorisations) to be referred to specific accesses,
providing fine-grained reference to the subjects and
objects in the system. More precisely, the language
should provide support for authorisations specified for
groups of users, groups of objects, and possibly even
groups of actions.

• Protection requirements may need to depend on the
evaluation of some conditions (e.g., system’s predicates
or conditions that make access dependent on the
information being accessed). An access control
language should then allow the specification of generic
constraints on subjects, objects, and on contextual
information.

• An access control language should support
the definition of different types of access rules.
Traditionally, there are access rules that specify
the accesses that should not be allowed and
access rules that specify the accesses that should be
allowed.

• An access control language should support the
definition of administrative policies that regulate the
specification of access rules, that is, define who can
add, delete, or modify them.

Several of the most recent language designs rely on
concepts and techniques from logic, specifically from logic
programming: Woo and Lam (1993), Li et al.’s D1LP and
RT (Li et al., 2002, 2003; Li and Mitchell, 2003),
Jim’s SD3 (2001) and DeTreville’s Binder (2002).
Logic languages are particularly attractive as policy
specification languages. One obvious advantage lies
in their clean and unambiguous semantics, suitable for
implementation validation, as well as formal policy
verification. Second, logic languages can be expressive
enough to formulate all the policies introduced in the
literature. The declarative nature of logic languages yields a
good compromise between expressiveness and simplicity.
Their high level of abstraction, very close to the
natural language formulation of the policies, makes them
simpler to use than imperative programming languages.
However, security managers are not experts in formal
logics, either, so generality is sometimes traded for
simplicity. For this reason, some languages do not adopt a
first-order syntax, even if the policy language is then
interpreted by embedding it into a first-order-logic.
One of the major challenges in the definition of a policy
language is to provide expressiveness and flexibility while
at the same time ensuring easiness of use and therefore

applicability. A promising solution in this direction is the
proposal by Jajodia et al. (2001b) presented next.

3.1 A flexible authorisation framework

Jajodia et al. (2001b) worked on a proposal for a
logic-based language that attempted to balance flexibility
and expressiveness on one side, and easy management
and performance, on the other. Their language allows
the representation of different policies and protection
requirements, while at the same time providing
understandable specifications, clear semantics, and bearable
data complexity. Their proposal for a Flexible Authorisation
Framework (FAF) corresponds to a polynomial (quadratic)
time data complexity fragment of default logic.

The components of a FAF are mainly the following:

• data items (objects): are the resources that can be
accessed by system users; in most realistic systems,
data items are organised hierarchically

• access types: are the different actions that users try to
execute on different data items

• users and group of users: the word ‘user’ always refers
to a human being, while a group is a non-empty set of
users; in most applications, users and groups are
organised into a hierarchy, which typically looks like
a directed acyclic graph

• roles: are groups of privileges that a user can execute
only when playing that specific role; roles too may be
organised as a hierarchy

• administration: is a policy that regulates who can grant
and revoke authorisations.

It is important to notice that groups of users and roles are
not the same: groups are sets of people while roles are sets
of privileges, furthermore, while roles can be activated and
deactivated directly by users, groups belonging is not
decided directly by users.

Formally, the data system (DS) is a 5-tuple (OTH,
UGH, RH, A, Rel) where: OTH is an object-type hierarchy,
UGH is a user-group hierarchy, RH is a role hierarchy,
A is a set whose elements are called authorisation modes
or actions and Rel is a set of elements called relationships.
The three hierarchies have not common nodes.

In FAF, policies are divided into different decision
stages (as in Figure 3), and the framework structure has the
following components.

Figure 3 Functional authorisation architecture

Source: Jajodia et al. (2001b)

 Access control policies and languages 99

• A history table whose rows describe the accesses
executed.

• An authorisation table whose rows are authorisations
composed of the triples (s, o, <sign>a), where s is
the subject, o the data item, a the action and <sign>
may be + if the action is allowed and – if it is denied.
This is the set of explicitly specified authorisations.

• The propagation policy specifies how to obtain new
derived authorisations from the explicit authorisation
table. Typically, derived authorisations are obtained
according to hierarchy-based derivation. However,
derivation rules are not restricted to this particular form
of derivation.

• The conflict resolution policy describes how possible
conflicts between the (explicit and/or derived)
authorisations should be solved.

• A decision policy defines the response that should be
returned to each access request. In case of conflicts or
gaps (i.e., some access is neither authorised nor
denied), the decision policy determines the answer.
In many systems, decisions assume either the open or
the closed form (by default, access is granted or denied,
respectively).

• A set of integrity constraints that may impose
restrictions on the content and output of the
other components; integrity rules are then used to
individuate errors in the hierarchies or in the explicitly
specified authorisations or for implementing duty
separation.

The Authorisation Specification Logic language (ASL)
is a logic language that is used to encode the system security
needs. The predicates used to express the policy are the
following, where s, o and a (representing the subject, object,
and action of the authorisation, respectively) may be both
constant or variable.

• cando(o, s, ±a) represents authorisations explicitly
inserted by the security administrator. Each of them
represents that the administrator wishes to allow,
or deny (depending on the sign associated with the
action), subject s to do action a on object o.

• dercando(o, s, ±a) represents authorisations derived
by the system using logic program rules. dercando
rules typically include in their body cando and cando
literals (which represent the explicit or derived
authorisations being propagated).

• do(o, s, ±a) definitively represents the accesses that
must be granted or denied, enforcing conflict resolution
and access decision policies. do rules can include in
their body both cando and dercando literals
expressing the presence/absence of authorisations
affecting the decision.

• done(o, s, r, a, t) represents the fact that s, playing
role r, performed action a over resource o at time t.
This predicate is used to keep track of the history
of accesses in the system.

• error represents the violation of an integrity
constraint.

In addition, the language has a set of predicates for
representing hierarchical relationships (hie-predicates),
and additional application-specific predicates, called
rel-predicates. Hierarchical predicates represent
hierarchical relationships within the different components of
the system (objects, subjects, or roles). These predicates can
state if element a is a direct on indirect descendant of
element b for the specified hierarchy. For instance, predicate
in(s, s′ASH) where s and s′ are subjects (i.e., users, groups,
or roles) and ASH is the authorisation subject hierarchy
obtained combining UGH and RH, evaluates whether s is a
subgroup of s′ in ASH. Application-specific predicates,
instead, capture the possible different relationships,
existing between the elements of the data system,
that may need to be taken into account by the access
control system. Examples of rel-predicates are
owner(user, object), which models ownership of
objects by users, or supervisor(user1, user2),
which models responsibilities and control within the
organisational structure.

The language for expressing authorisations is therefore
based on few predefined predicates for the specification
of authorisation rules (cando), the propagation
policy (dercando), and the decision/conflict resolution
policy (do). The structure of authorisation specifications
guarantees stratification and hence, stable model
uniqueness and PTIME computability. Policies are
then expressed by a restricted class of stratified
and function-free normal logic programs, called
authorisation specifications. The semantics of authorisation
specifications is the stable model semantics (Gelfond and
Lifschitz, 1988).

While simple, the language proves quite expressive:
administrators can specify, via the logic rules, any policy
for propagating authorisations and resolving conflicts.
Figure 4 illustrates the rules for propagating authorisations
along a subject hierarchy ASH according to the commonly
used overriding policies, including: no propagation
(authorisations are not propagated along the hierarchy),
no overriding (authorisations are propagated along the
hierarchy, maintaining also more than a rule for each node),
most specific overrides2 (if two authorisations are inherited
by a node, the one coming from the lowest parent is kept),
path overrides (the label attached to a node n overrides
a contradicting label of a supernode n for all the
subnodes of n only for the paths passing from n).
Figure 5 illustrates the conflict resolution/decision policies
including: no-conflict (conflicts are considered errors),

100 S. De Capitani di Vimercati, S. Foresti, P. Samarati and S. Jajodia

denials-take-precedence (negative authorisations prevail
over positive ones), permissions-take-precedence
(positive authorisations prevail over negative ones), and
nothing-takes-precedence (the conflict remains unsolved).
Some forms of conflict resolutions can be expressed
within the propagation policy, as in the case of overriding
(also known as most-specific-takes-precedence).

Figure 4 An example of propagation policies in ASL

Figure 5 Conflict resolution/decision policies in ASL

Authorisation specifications are stated as logic rules
defined over the predicates explained above. To ensure
stratifiability, the format of the rules is restricted as
illustrated in Figure 6. Note that the adopted strata reflect
the logical ordering of the decision stages illustrated in
Figure 3.

Each of the predicates here described is used within a
specific component of the FAF architecture. The history
table has only done rules; the authorisation table has only
cando rules; the propagation policy contains mostly
dercando rules; conflict resolution and decision policy have
only positive do rules (i.e., with sign + for a) and an
additional rule do(o, s, -a) ← ¬do(o, s, +a),
that guarantees completeness of the policy. In the end, the
integrity module has only error rules.

Figure 6 Rule composition and stratification of FAF

Jajodia et al. (2001b) present a materialisation technique for
producing, storing, and updating the stable model of the
policy. The model is computed on the initial specifications
and updated with incremental maintenance strategies.

Note that the clean identification and separation of the
four decision stages can be regarded as a basis for a policy
specification methodology. In this sense, the choice of a
precise ontology and other syntactic restrictions (such as
those illustrated in Figure 6) may assist security managers in
formulating their policies.

4 Attribute-based specifications
In an open system like the Internet, the different parties
(clients and servers) that interact with each other to offer
services are usually strangers. They have no preexisting
relationship and are not in the same security domain.
Therefore, on the one side the server may not have all the
information it needs to decide whether or not an access
should be granted. On the other side, however, the client
may not know which information she needs to present to a
(possibly just encountered) server to get access. All this
requires a new way of enforcing the access control process,
which cannot be assumed anymore to operate with a given
prior knowledge and return a yes/no access decision. Rather,
the access control process should be able to operate without
a priori knowledge of the party requesting access and return
the information of the requisites that it requires be satisfied
for the access to be allowed (Bettini et al., 2002; Jajodia
et al., 2001a). Also, the traditional “identity-based access
control models”, where subjects and objects are usually
identified by unique names, are not appropriate in this
setting. Instead, attributes other than identity are useful in
determining the party’s trustworthiness. In this context,
access restrictions to the data/services should be expressed
by policies that specify the properties (attributes) that a
requester should enjoy to gain access to the data/services.
Some proposals have been developed that use digital
certificates. Traditionally, the widely adopted digital
certificate has been the identity certificate. An identity
certificate is an electronic document used to recognise an
individual, a server, or some other entity, and to connect
that identity with a public key (Blaze et al., 1996, 1998;

 Access control policies and languages 101

Chu et al., 1997). More recent research and development
efforts have resulted in a second kind of digital certificate,
the attribute certificate (Farrell and Housley, 2002) that
can be used for supporting attribute-based access
control. An attribute certificate has a structure similar
to an identity certificate but contains attributes that specify
access control information associated with the certificate
holder (e.g., group membership, role, security clearance).
One of the most important aspects that attribute-based
access control policies should support is the ability to
specify accesses to a collection of services based on a
collection of attributes. In this context, logic programming
provides a convenient, expressive, and well-understood
framework in which to work with authorisation policy.
Wang et al. (2004) propose a framework that models
an attribute-based access control system using logic
programming with set constraints of a computable set
theory. More precisely, the set theory used in this approach
is CLP(SET), the hereditarily finite and computable set
theory developed by Dovier et al. (2000). Here, sets are
constructed out of a finite universe by applying operators
such as ∩, ∪ and so on. A policy can refer to both attributes
and services, and a two sorted first order language with set
variables is then used. The terms are constructed in the
usual way by means of variables and functions. Also, the
approach supports two kinds of predicates: those used to
specify the computation domain and those used to specify
its sub-domain of constraints. To reduce the runtime
inefficiency of constrained logic programs, which is due to
the backtracking through program clauses, two techniques
are used. The first technique consists in transforming any
attribute-based access control policy into one with less
backtracking but the same semantics. The second technique
consists in materialising predicate instances accessed
repeatedly.

Bonatti and Samarati (2002) propose a uniform
framework for regulating service access and information
disclosure in an open, distributed network system like
the web. Access regulations are specified as logical
rules, where some predicates are explicitly identified.
Attribute certificates are modelled as credential expressions
of the form credential_name(attribute_name1
= value_term1), …, attribute_namen = value_
termn, where credential_name is the attribute
credential name, attribute_namei is the attribute
name, and value_termi is either a ground value or a
variable. Besides credentials, the proposal also allows to
reason about declarations (i.e., unsigned statements) and
user-profiles that the server can maintain and exploit for
taking the access decision. Communication of requisites to
be satisfied by the requester is based on a filtering and
renaming process applied on the server’s policy, which
exploits partial evaluation techniques in logic programs.

Although attribute-based access control polices
allow the specifications of access control rules with
reference to generic attributes or properties of the involved
parties, they do not fully exploit the semantic power and
reasoning capabilities of emerging web applications.

The next step in the development of expressive and
powerful access control models and policies should then be
the support of access control rules based on the rich
ontology-based metadata associated with both the subjects
accessing the resources and the resources themselves
(Damiani et al., 2004).

5 Conclusions
Access control models, policies, and languages are
constantly under development to obtain frameworks
flexible and expressive enough so as to handle the
specification and enforcement of security requirements of
many emerging applications and real-world scenarios.
In this paper, we presented the main features that modern
access control models and policies should support and
discussed recent proposals in the area of access control
languages.

References
Bettini, C., Jajodia, S., Wang, S. and Wijesekera, D. (2002)

‘Provisions and obligations in policy rule management and
security applications’, Proc. 28th International Conference
on Very Large Data Bases, Hong Kong, China, August,
pp.351–372.

Blaze, M., Feigenbaum, J. and Lacy, J. (1996) ‘Decentralized trust
management’, Proc. 1996 IEEE Symposiumon Security and
Privacy, Oakland, CA, USA, May, pp.164–173.

Blaze, M., Feigenbaum, J., Ioannidis, J. and Keromytis, A. (1998)
‘The role of trust management in distributed systems
security’, Secure Internet Programming: Issues in
Distributed and Mobile Object Systems, Springer-Verlag,
LNCS State-of-the- Art series, pp.185–210.

Bonatti, P. and Samarati, P. (2002) ‘A unified framework for
regulating access and information release on the web’,
Journal of Computer Security, Vol. 10, No. 3, pp.241–272.

Chu, Y-H., Feigenbaum, J., LaMacchia, B., Resnick, P. and
Strauss, M. (1997) ‘Referee: trust management for web
applications’, World Wide Web Journal, Vol. 2, No. 3,
pp.706–734.

Damiani, E., De Capitani di Vimercati, S., Fugazza, C. and
Samarati, P. (2004) ‘Extending policy languages to the
semantic web’, Proc. International Conference on Web
Engineering, Munich, Germany, July, pp.330–343.

Date, C. (1995) An Introduction to Database Systems,
6th ed., Addison-Wesley, Boston, MA, USA.

DeTreville, J. (2002) ‘Binder, a logic-based security language’,
Proc. 2001 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May, pp.105–113.

Dovier, A., Piazza, C., Pontelli, E. and Rossi, G. (2000) ‘Sets and
constraints logic programming’, ACM Transactions of
Programming Languages and Systems, Vol. 22, No. 5,
September, pp.861–931.

Farrell, S. and Housley, R. (2002) ‘An internet attribute certificate
profile for authorization’, RFC 3281, April.

Fernandez, E., Gudes, E. and Song, H. (1994) ‘A model for
evaluation and administration of security in object-oriented
databases’, IEEE Transaction on Knowledge and Data
Engineering, Vol. 6, No. 2, pp.275–292.

102 S. De Capitani di Vimercati, S. Foresti, P. Samarati and S. Jajodia

Gelfond, M. and Lifschitz, V. (1988) ‘The stable model semantics
for logic programming’, Proc. 5th International Conference
and Symposium on Logic Programming, The MIT Press,
Cambridge, Massachusetts, pp.1070–1080.

Jajodia, S., Kudo, M. and Subrahmanian, V. (2001a) ‘Provisional
authorizations’, in Ghosh, A. (Ed.): E-Commerce Security and
Privacy, Kluwer Academic Publishers, Boston, pp.133–159.

Jajodia, S., Samarati, P., Sapino, M. and Subrahmanian, V.
(2001b) ‘Flexible support for multiple access control
policies’, ACM Transactions on Database Systems, Vol. 26,
No. 2, June, pp.214–260.

Jim, T. (2001) ‘SD3: a trust management system with certified
evaluation’, Proc. 2001 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, May, pp.106–115.

Landwehr, C. (1981) ‘Formal models for computer security’,
ACM Computing Surveys, Vol. 13, No. 3, pp.247–278.

Li, N. and Mitchell, J. (2003) ‘Datalog with constraints:
a foundation for trust-management languages’, Proc. Fifth
International Symposium on Practical Aspects of Declarative
Languages (PADL 2003), New Orleans, LA, USA, January,
pp.58–73.

Li, N., Mitchell, J. and Winsborough, W. (2002) ‘Design
of a role-based trust-management framework’, Proc. IEEE
Symposium on Security and Privacy, May, Oakland, CA,
USA, pp.114–130.

Li, N., Grosof, B. and Feigenbaum, J. (2003) ‘Delegation logic:
a logic-based approach to distributed authorization’,
ACM Transactions on Information and System Security,
Vol. 6, No. 1, February, pp.128–171.

Lunt, T. (1988) ‘Access control policies: some unanswered
questions’, IEEE Computer Security Foundations Workshop
II, Franconia, NH, June, pp.227–245.

Rabitti, F., Bertino, E., Kim, W. and Woelk, D. (1991) ‘A model
of authorization for next-generation database systems’,
ACM TODS, Vol. 16, No. 1, March, pp.89–131.

Samarati, P. and De Capitani di Vimercati, S. (2001)
‘Access control: policies, models, and mechanisms’,
in Focardi, R. and Gorrieri, R. (Eds.): Foundations of Security
Analysis and Design, LNCS 2171, Springer-Verlag, Berlin,
Heidelberg, New York, pp.137–196.

Shen, H. and Dewan, P. (1992) ‘Access control for collaborative
environments’, Proc. Int. Conf. on Computer Supported
Cooperative Work, Toronto, Ontario, Canada, November,
pp.51–58.

Wang, L., Wijesekera, D. and Jajodia, S. (2004) ‘A logic-based
framework for attribute based access control’, Proc. 2004
ACM Workshop on Formal Methods in Security Engineering,
October, Washington DC, USA.

Wijesekera, D. and Jajodia, S. (2003) ‘A propositional policy
algebra for access control’, ACM Transactions on Information
and System Security, Vol. 6, No. 2, May, pp.286–325.

Woo, T. and Lam, S. (1993) ‘Authorization in distributes system:
a new approach’, Journal of Computer Security, Vol. 2,
Nos. 2–3, pp.107–136.

Notes
1In an open policy scenario, the dual example of all users, but a
few, who have to be denied an access can be considered.

2Note that this requires the use of an additional predicate (over) to
evaluate whether an authorisation specified for subject s′ can
propagate to a subgroup s along any of the paths connecting them.

Website
Apache http server version 2.0, http://www.apache.org/

docs-2.0/misc/tutorials.html.

	Text1: www.inderscience.com

