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AbstracfNThe protection of the conbdentiality of outsourced ~ on the data themselves, therefore causing breachdatin
data is an important problem. A critical aspect is the ability conbdentiality

to efpciently access data that are stored in an encrypt S
! o i everal approaches have been recently proposed to protect
format, without giving to the server managing access requés ext pp y prop P

the ability to infer knowledge about the data content of the Teelcqes_s conbdentiality [1], [2], [3]. While with diﬁerent_
access executed by the clients. The approaches that have bee Variations, such approaches share the common observation
proposed to solve this problem rely on a continuous rewritiy ~ that the major problem to be tackled to provide access

and re-encryption of the accessed data, like the shuf8e inde  conpdentiality is to break the static correspondence matwe
that has recently been proposed. We here propose a different 412 and the physical location. Among such proposals, the

approach that uses three independent servers to manage the . - ” . .
data structure. The use of three servers is motivated by the shuff3e index1] provides a key-based hierarchical organiza-

increased protection that derives from the use of independe  tion of the data, supporting an efbcient and effective acces
servers compared to the use of a single server. The protectio  execution (e.g., including support of range operations). |
shows to increase in a signipcant way if a constraint is thjs paper, we build on such an indexing structure and on the
introduced that at every request an accessed node has to be idea of dynamically changing, at every access, the physical
moved to a different server. The use of three servers permits locai f dat d id ht
to keep the accessed data protected even when the servers ocation Of data, and provide a néw approach o access
collude. The protection is evaluated with a probabilistic nodel ~ conPdentiality based on a combinationdzita distribution
that estimates the loss of information that derives from the and swapping The idea of applying data distribution for
application of the technique. conbdentiality protection is in line with the evolution of
KeywordsAccess conbdentiality, Data distribution, Swapping  the market, with an increasing number of providers offer-
ing computation and storage services, which represent an
opportunity for providing better functionality and sedwri
I. INTRODUCTION In particular, our approach relies on data distribution by
A recent trend and innovation in the IT scenario has beemllocating the data structure over three different sepneaash
the increasing adoption of the cloud computing paradigmof which will then see only a portion of the data blocks and
Companies can rely on the cloud for data storage andvill similarly have a limited visibility of the actual accsss
management and then benebpt from low costs and high avaibn the data. Data swapping implies changing the physical
ability. End users can benebt from cloud storage for en@yin location of accessed data by swapping them between the
availability of data anytime anywhere, even from mobilethree involved servers. Swapping, in contrast to random
devices. Together with such a convenience comes howeveshuf3ing, forces the requirement that whenever a block is
a loss of control of the data (stored and managed by thaccessed, the data retrieved from it (i.e., stored in thekblo
cloud). The problem of ensuring data conbdentiality in datédbefore the accesghould notbe stored at the same block
outsourcing and cloud scenarios has received considerabidter the access. We illustrate in this paper how the use of
attention by the research and development communities ithree servers (for distributed data allocation) togethih w
the last few years and several solutions have been proposexlvapping (forcing data re-allocation across servers)igeov
A simple solution for guaranteeing data conbdentiality-con nice protection guarantees, typically outperforming tlse u
sists in encrypting data. Modern cryptographic algorithmsof a random shuf3ing assuming no collusion among servers,
offer high efbciency and strong protection of data contentand maintaining sufbcient protection guarantees evenein th
As noted by more recent works, simply protecting datapresence of collusions among two, or even all three, of the
content with an encryption layer does not fully solve theinvolved servers.
conbdentiality problem, asccess conbdentialitythat is,
the conbdentiality of the specibc accesses performed on
the data, remains at risks. There are several reasons for A shuff3e index is arunchained B+-tree such that:i)
which access conbdentiality may be demanded [1], suckach node stores up #© — 1 (with F the fan-out of the
as the fact that breaches in access conbdentiality may leak+-tree) ordered values and has as many children as the
information on access probles of users and, in the end, everumber of values stored plus oni the tree rooted at
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the j-th child of an internal node stores values included inis modibed, applying swapping instead of random shuff3ing,
the rangefv,;_1,v,), wherev,_; andv; are the(j — 1)-  forcing the node involved in an access to change the server
th and j-th values in the node, respectively; aniJ all  where it is stored (again exploiting the distributed alloca
leaves, which store actual tuples, are at the same level dion). Also, it departs from the cache, not requiring any
the tree, that is, they all have the same distance from thetorage at the client.
root node. Figure 1(a) illustrates an example of unchained The basic idea of our approach is to randomly partition
B+-tree. In this bgure, and in the remainder of the paperdata among three independent servers, and, at every access,
for simplicity, we refer to the content of each node with arandomly move g§wap data retrieved from a server to any
label (e.g.,a), instead of explicitly reporting the values in of the other two so that data retrieved from a server would
it. In the example, root node has six childrend;, ..., f) not be at the same server after the access. Since nodes are
each with three to four children. For easy reference, waandomly allocated to servers, the path from the root to
label the leaf nodes, descendants of a node, with the santbe leaf target of an access can traverse nodes at different
label as the node concatenated with a progressive numbservers. Then, to provide uniform visibility at any access a
(e.g.,a1, a2, a3 are the children of node). At the logical every server (which should operate as if it was the only one
level, each node is allocated to a logical identiber. Ldgicaserving the client), every time the node to be accessed at a
node identibers are also used in internal nodes as poioters gjiven level belongs to one server, our approach also regjuest
their children. At the physical level, each node is trareslat to access one additional block at the same level at each of
into an encrypted chunk stored at a physical block. Thehe other servers.
encrypted chunk is obtained by encrypting the concatematio The reader may wonder why we are distributing the
of the node identibPer and its content (values and pointershuf3e index amonthree servers, and not two or four. The
to children). Encryption protects the conbdentiality andrationale behind the use of multiple servers is to provide
integrity of each node as well as of the overall data strectur limited visibility, at each of the servers, of the data stune
Retrieval of a value in the tree requires walking the treeand of the accesses to it. In this respect, even adopting two
from the root to the target leaf, following at each level theservers could work. However, an approach using only two
pointer to the child in the path to the target leaf. Being theservers would remain too exposed to collusion (between the
index stored in encrypted form, such an access requires awo) that, by merging their knowledge, could reconstruet th
iterative process with the client downloading at each levehode-block correspondence and compromise access and data
the block of interest, decrypting it, and determining th&tne conbdentiality. The data swapping (in contrast to the remdo
block (storing the child of interest) to be requested. shufBing) we adopt, while providing better protection with
Although the data structure is encrypted, by observingespect to shuf3ing in general, implies deterministicloeal
a long enough sequence of accesses, the server (or oth@n in the case of two servers and could then cause exposure
observers having access to it) could reconstruct the tggolo in case of collusion. The use of three servers provides
of the tree, identify repeated accesses, and possiblysefer instead considerable better protection. Swapping ensuaes
sitive data content [4], [5]. To protect data and accesses fr data are moved out from a server at every access, while
such inferences, the shufe index uses of complementastill providing non determinism in data reallocation (ae th
techniques bringing confusion to the observer and destgoyi data could have moved to any of the other two servers),
the static correspondence between nodes and blocks whesgen in presence of collusion among the three servers.
they are stored. In particulai) to provide confusion as to While going from two servers to three servers provides
which block is the target of an access, more blocks (theconsiderably higher protection guarantees, further asirey
target plus some covers) are requested at every adgeas; the number of servers provides limited advantage, while
cache is maintained with the most recently accessed pathsistead increasing the complexity of the system.
andiii) at every access, the nodes/blocks accessed and the
ones in the cache are shufed (randomly reassigning noddy¥: DATA STRUCTURE AND THREESERVER ALLOCATION
to blocks, and performing a new encryption) and all the At the abstract level, our structure is essentially the same
involved blocks rewritten back on the server. as the shuff3e index, namely we consider an unchabed
tree debned over candidate kdéy, with fan-out F, and
storing data in its leaves. However, we consider the root to
Our approach builds on the shuf3e index by borrowinghave three times the capacity of internal nodes. Sinceriater
from it the base data structure (encrypted unchaiBee nodes and leaves will be distributed to three differentesesv
tree) and the idea of breaking the otherwise static correassuming a three times larger root allows us to conveniently
spondence between nodes and blocks at every access.slilitit among the servers (instead of replicating it) pding
differs from the shuff3e index in the management of thebetter access performance by potentially reducing thehheig
data structure, for storage and access (exploiting aloigedl  of the tree. In fact, aB+-tree having at mossF children
allocation), and in the way the node-block correspondencéor the root node can store up to three times the number
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ABSTRACT INDEX translates to a logical node and is allocated to a logical
identiPern.id, used also to represent the pointemtan its
parent. To regulate data distribution at the different ey

we distinguish three subse®D,, ic{Y,G,B}, of logical
identibPers corresponding to the physical addresses satred
each of the storage servess, ic{Y ,G,B}. Allocation of
abstract nodes to logical identibers is debned through an
allocation function, formally debned as follows.

Debpnition 4.1 (Distributed allocation)Let A® be the set
of abstract nodes in a shufe indeSy,, Sy, Sg be the
fﬁ!ﬂ hﬁﬁ servers storing it, andDy, ZD¢, ZD g be the set of logical
identipers at serve®y, S, Sg, respectively. Adistributed
allocation functionis a bijective functionp: N*— IDy U

IDg U IDp that associates a logical identiber with each
Yo1 Go1 BO1 abstract node.
] [ |

Given an abstract node’, ¢(n®) determines the identiber
L] ] Ll Ll [ ] [ of the logical noden wheren® is allocated, denoted.id.
et vaa vas vas vas vas vay | cas cas caa cas cas cae car|ens mra mas mas mas se oy |1 LNE fOllOWing, we denote withr(id) the server at which
OB OO O0 SN MEE - the logical node with identibed is stored. Note that the
(© order of logical identibers is independent from the node
content. Also, the allocation of logical nodes to physical
Figure 1: An example of abstract (a), logical (b), andblocks and, more in general, to servers does not depend
physical (c) shufRe index distributed at three servers on the topology of the abstract structure. In other words,
a node may be stored at a different server with respect to
its parent and/or its siblings. An example of distributidn o
of tuples/values stored in a traditionBH--tree of the same the index in Figure 1(a) is illustrated in Figure 1(b). For
height. Formally, each internal abstract nodein the tree  the sake of readability, logical identibers are reportedhen
stores a list, . . ., v, of ¢ values, with[g] —1<¢<F-1 top of each node and blocks are color-coded (yellow for
(¢ < 3F — 1 for the root node), ordered from the smallest Sy, green forS;, and blue forSg). For simplicity and easy
to the greatest, and has+ 1 children. Thei-th child of a  reference, each logical identiPer starts with a letter dego
node is the root of the subtree containing the vakasvith ~ the server where the corresponding block is storgdfdr
vi1 <val<v,;,i=2,...,¢q the brst child is the root of Sy, G for S, and B for Sg), and the Prst digit denotes
the subtree with all valuegal < v;, while the last child is its level in the tree. As an examplé&y, is the identiber
the root of the subtree with all valueml > v,. Each leaf of a node at level of the index and stored at servee:.
node stores a set of values, together with the tuples in th distributed indexZ can be represented, at the logical
dataset having these values for attribléife All the non-root  level, as a paifN,(Sy,S¢,Sg)), with NV the set of logical
nodes have to be at lea&% full. Figure 1(a) illustrates an nodes composing it, angy, Sz, andSg the servers where
example of our abstract data structure. these nodes are physically stored. To guarantee diswibuti
At the logical level, the abstract root node translatesamong the different servers (and provide uniform visipilit
to three logical nodes, say,, r1, r2, each storing one at every server in access execution, as we will explain in
third of the values and pointers to children of the abstracthe following section), the distributed allocation furacti
root node. More precisely;, stores valuess,...,v;, with ~ guarantees that each non-root node in the index, as well
i = L%?J' and the corresponding pointers to children;as o, r1, andrs together, has at least one child stored at
r1 stores valuesvi,o,...,V2;11, and the corresponding each server. At starting time, we then assume the structure
children; andr, stores the remaining values;,s,...,v,,  to be evenly distributed at the level of node, meaning that
and the corresponding children. (Note that values; the children of each node are equally distributed am®ng
and vo;, o are not necessary for the index debnition andSc, andSg (i.e., each server will be allocated one thitd
are then not explicitly stored in the obtained roots.) Forof the children of every node). We also assume the structure
instance, Figure 1(b) illustrates an example of logicakind to be evenly distributed both globally and for each level in
representing the abstract index in Figure 1(a) where théhe tree. Figure 1(b) represents an example of logical index
abstract root node is represented by three logical nodes, Where the children of each node, the nodes in each level,
ro, T1, T2, €ach having two of the six children of the and the nodes in the tree are evenly distributed to servers.

abstract root noder. Each (non-root) abstract node” At the physical level, logical addresses are translated




into physical addresses at the three servers. Node contefitiote that even if only one block is accessed at every level,
is prebxed with a random salt and encrypted in CBCno information is leaked to the server on the tree topology,
mode with a symmetric encryption function. The result ofsince:i) the accessed blocks may not be actually in a parent-
encryption is concatenated with the result of a MAC functionchild relationship, andi) the content of accessed blocks
applied to the encrypted node and its identiber, producinghanges just after the access.) Our requirement of uniform
an encrypted block allocated to a physical address. The visibility at each server is captured by the following prage
presence of the node identiber in each block permits the pyoperty 5.1 (Uniform visibility):Let 7 = (A

client to assess the authenticity and integrity of the block's,. 5. 5.,)) be a distributed index, anl¥ = {n1, ..., nm}
in each node, also of the whole index structure. Figure 1(Cyatispeainiform visibility iff for each S, i€{Y,G,B}, and

illustrates the physical representation of the logicalewd tor each levell in Z, 3' n € A such thatii) o(n.id)=S;;
in Figure 1(b). In the following, for simplicity and without andii) n is at levell in Z.

loss of generality, we assume that the physical address of For instance, our two sample accesses above do not satisfy
a block corresponds to the logical identiber of the node it '

stores. The view of each sen@rcorresponds to the portion uniform visibility. To satisfy uniform visibility, we comie-

. o ent, at each level, the access required by the retrieval of
of the physical representation in Figure 1(c) allocated a ; e
he target value with two additional accesses at the servers
S;. Note that each server can see all and only the block

. at do not store the target block at that level. We callers
allocated to it. We use the term node to refer to an abstra -
. ese additional accesses as they resemble cover seafches o
data content and block to refer to a specibc memory slot

. . ) ; e shuf3e index, although they have also many differences
in the logical/physical structure. When either terms can bei . S
. : e.g., they cannot be pre-determined as data allocation is
used, we will use them interchangeably. . :
unknown, they may not represent a path in the index, and
V. WORKING OF THE APPROACH they are not observed by the same server observing the
. L . _target). Stressing their distributed nature, we term them
We illustrate how access execution is performed adoptin

distributed covers and swapping to guarantee conbdeyltiali%IStrlbUted covers, debned as follows.

of the accesses and of the data structure. DePnition 5.1 (Distributed covertet  Z = (N,
(Sv,S¢,Sp)) be a distributed index, anék be a node
A. Distributed covers in N. A set of distributed coversfor n is a pair of

Like in the shufRe index, retrieval of a key value (or more N0des (ni,n;) in N such that the following conditions
precisely the data indexed with that key value and storedold: i) n,n;,n; belong to the same level of the index;
in a leaf node) entails traversing the index starting fromand ii) o(n.id) # o(n..id), o(n.id) # o(n;.id), and
the root and following, at every node, the pointer to theo (ni.id) # o(n;.id).
child in the path to the leaf possibly containing the target As stated by the debnition above, distributed covers for
value. Again, being data encrypted, such a process needs o noden are a pair of nodesn{, n;) that belong to
be performed iteratively, starting from the root to the Jeaf the same level as, and such that the three nodes are
at every level decrypting (and checking for integrity) the allocated at different servers. For instance, distribatacers
retrieved node to determine the child to follow at the nextfor Yi» could be any of the following pairs{Bi1, G11),
level. Since our data structure is distributed among thre€B;;, G12), (Bi2,G11), (Bi2,G12). Similarly, at the leaf
servers and the allocation of nodes to servers is indepéndelevel, the distributed covers foB,, could be any pair
from the allocation of their ancestors and/or descendant®f nodes (Ys., Ga.), with x any value between 1 and 7
the path from the root to a target leaf may (and usually(e.g., (Y23, G21)). The distributed covers of a root node are
does) involve nodes stored at different servers. For itstan the roots at the other two servers (e.d=o{,Bo1) is the
with reference to Figure 1, retrieval of a valde entails  distributed cover pair folry;).
traversing pathir;,d,d;) and hence accessing block%, With the consideration of distributed covers, to guarantee
Y12, and By, each stored at a different server. Retrieval ofuniform visibility at every server, access execution waaks
value a3 entails traversing the patlry,a,as) and hence follows. Again, an iterative process is executed starthognf
accessing block¥y;, Bi2, and Bys, the brst stored aby the root to the leaf level. First, the client retrieves thetro
and the last two stored &g. Since each server can observeat all the three servers and decrypts them to determine the
different iterations and, after a long enough sequence dfarget root (i.e., the one going to the target value) and the
observations, also infer the levels associated with blockgtarget child node: to visit. It also chooses two distributed
we aim at ensuring a uniform visibility at every server. In covers forn, in such a way that covers are indistinguishable
other words, we want every server to observe, for everyrom targets [1]. The client requests accessntand its
search, the access to a block at each level, with each servdistributed covers to the respective servers. It then ghsry
then operating as if it was the only one serving the clientthe accessed nodes and iteratively performs the same proces
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until the leaves (target and distributed covers) are redche BEFORE ACCESS

As an example, consider the data structure in Figure 1(b) and 1 - I
assume valud; is to be accessed. The nodes along the path ,}, GL oha L—"g ) {

to the target of the accesses are, d, d;) entailing accesses
to target blocks(Go1,Yi2, B24). Assume that distributed
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covers(Yy1, Bo1), (G11, B11), and(Gay, Ya3) are used for - 2l 3] I o] = 8
Go1, Y12, and By, respectively. The nodes involved by the @)

access, as observed by each server, arelthgryy,, Yo for SWAPPING

Sy, Goi, G11, Go1 for S, and301, Bi1, Bay for Sg. Note Y:/(;Nl

that each server simply observes a sequence of three agcesse

to three blocks, while it cannot see their content. In pptei pL2 ‘“‘"“ pLL

according to Debnition 5.1, every pair of nodes at the same
level asn, but allocated at the other two servers, representgai
a pair of distributed covers for. However, in the choice

of distributed covers, we need to take into consideration Yoo =+ G Ga — Bu Bu — Yo
the fact that accessed nodes are reallocated. In fact, when Gu — Y2 Yz - Bu  Bu — Gnu
n is moved to a different block, the pointers toin its Gz — Yz  Ba — Ga Yz — Bn
parent must be updated to maintain consistency of the index. (b)
Therefore, the nodes involved in an access should always - ccess
{Eorm a sub_—tree, possibly including paths of dlffer(_ant sy jm%
ach distributed cover at levekhould then be child of the l {
G11 Y11

%@%
g

node along the path to the target at level 1 or of one pLz 2 L B
of its distributed covers. This is formally captured by the y—ﬁ!—y ﬁﬁ—y y_ﬂ_\ ﬁflﬁ

1
G23 Y24 B23 B27 Y21 Y23 G26 Y27 B26 G22 G21 G25 B

following debnition of chained set of distributed covers. a3 o2 3 3

Debpnition 5.2 (Chained distributed coverd)et (©
I=(N.(Syv.Sz.Sg)) be a distributed index, and _ — _
p = (no,...,nn) be a path inZ. A chained setof Figure 2: Evolution of the distributed index for a search for
distributed covers fop is a setC(p) of nodes inA s.t.. valuedl
) p C C(p); ii) Vnep, 3 {nj,n}}CC(p) with (nj,n})
distributed covers fom; andiii) VneC(p), eithern is a
root node or its parent belongs @p). iff, for each noden € N, the servers(n.id) wheren is

The distributed covers in the example above are Chaineatored before the access is different from the one where it
as the covers at every level are children of a node access&d stored after the access.
(either as target or cover) in the level above. Note thatavhil ~ Continuous moving prevents servers from building knowl-
in the example (for simplicity and readability of the bgure)€dge based on accesses they can observe as a node is
every accessed node has exactly one accessed child, suciminediately removed from a server after being accessed.
condition is not needed. In fact, DePnition 5.2 requiresyve For instance, servers will not be able to observe repeated
node to have its parent in the access (so to enable updad&cesses anymore. We guarantee satisfaction of this pyoper
of pointers to the node in its parent), while a node can hav®y swapping the content of the blocks accessed at every
no children in the access. For instantgs (d;) could have level. Swapping is dePned as follows.
also been used instead B3 (ec4) as one of the covers for  Depnition 5.3 (Swapping)Let ID be a set of logical
Boa, together withG;. The resulting set would have still jdentipers. Aswappingfor ID is a random permutation :ID
satisPed DePnition 5.2, — ID such thatvidelD, o(id)#£o (x(id)).

Figure 2(b) illustrates a possible swapping among the

i ] ] nodes/blocks accessed searching for valuever the index
A desired requirement of our approach is that data rey, Figure 1(a), assuming to adofYy,, Bo1), (Gi1,B11),

trieved (as target or cover) in an access are stored aF a difng (Ga1,Ya3) as distributed covers for fo6g;, Yi2, and
felrent server after the access. We_capture such arequitemes, For instance, swapor — Gor,Go1 — Boi, Bor —
with a property ofcontinuous movings follows. Yy, causes to move toGoy, 1 to move toBy;, andry
Property 5.2 (Continuous movingket Z = (N, to move toYy;. Figure 2(c) illustrates the effect of such
(Sv,S¢,Sp)) be a distributed index, anl = {nq,...,nm} a swapping on the data structure at the logical level. Note
be the set of nodes iV accessed as target or distributed that before re-writing blocks at the servers, the content of
cover by a search. The search satisbastinuous moving the corresponding nodes is re-encrypted with a different
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random salt that changes at every access. The adoptigni =(N ,(Sy,S¢.Sg)): distributed index with heighh */
of a different random salt in node encryption and thenpuT target value : value to be searched in
concatenation with a different node identiber guarantees tOUTPUT n : leaf node that containtarget value
produce a different encrypted block, even if the contentMAIN

P [T P - Parents:= download and decrypt blockp; from Sy
represents the same node. ThIS makgs it |m_p035|bl_e fot block Cioy from S, and block Boy from S
storage servers to tra(_:k swapping operations. Given axinde, jet  be a permutation of identipers Parentss.t. o(id) o (r(id))
characterized by a distributed allocation functipnrand a = swap nodes irParentsaccording tor

swapping functionr over a subsetD of the identipers in ~ +for =L ..hdo /* visit the index level by level*/

the index, the allocation function resulting from the swap ~ target.id := ﬁﬁﬂ;ﬁﬁ;ﬁ;ﬁi;gﬁ;ﬁf égﬁ,\f !

is debPned asp(n®)=n(p(n?)) iff d(n*)€ID; d(n*)=p(n®), & randomly chooseovell] and covel2] s.t.

otherwise. Note that the assignment function resultingfro thfy are _gh”dre” OPalre”tsat”d i ,
the application of a swapr still represents a distributed ZEC?,?:,[‘{])LZ&;&?,\;?{[Z]%)’ ollarget i) {(covei2)),
assignment function, since is a permutation function. For = Read:= download and decrypt each block with identiper
instance, with reference to the example in Figure 2, we note 'gi{;fnzgjigg'go(;’fei'gﬂh‘iﬁ;’;'gzlgf ‘;rgg‘egé'g; det
that each node is associated with one identiber before and o(id) o (r(id)) and a
after the access, and vice versa each identiber is assigned t eachneParentshas a child aSy,S¢.Sg

one node only both before and after the access. e If w does not exist, goto 6

. 1. swap nodes irReadaccording tor
Moving nodes among servers may reduce the number Qf: update pointers to children iRarentsaccording tor

children at a server for some nodes. In the worst case, a node encrypt and write each nodecParentsat servero(n.id)
may be left with no children on one of the servers. We note® targetid := m(target id) _

however that, since we initially dePne a balanced allogatio ... ‘,é‘;ﬁﬂs];:R"égﬁvem’ covef2] = m(covel2)

and in traditional systems the fan-out of the tree is highus: encrypt and write each nodecReadat servero(n.id)

(in the order of some hundreds), the probability that a nodé’ "eturn noden €Readwith n.id=target id

is left without children on one of the servers is extremely
low, due to a natural regression to the mean that reduces the ] .
stochastic drift. To completely solve this risk we checkttha Figure 3: Access algorithm
swapping does not create conbgurations where a server is

not represented in the descendants of a node.

C. Access execution algorithm (lines 11D12). The algorithm also updates the identiber of
the target and distributed covers accordingrtto preserve

the correctness of the search process (lines 13D14). dnce al
the levels in the tree have been visited, the algorithm nstur
the leaf node whergarget valueis stored, if such a value
rli)elongs to the dataset (line 17).

Figure 3 illustrates the pseudocode of the algorithm
executed at the client-side, enforcing the search proosss o
a distributed index, extended with our protection techagu
Given a request for searchirtgrget valug the algorithm
prst downloads from each server the block storing a portio
of the root node and swaps them according to a swapping The following theorem formally states and proves the
function = (lines 1D3). The algorithm then visits the in- correctness of the algorithm, and in particular the fact itha
dex and, for each levdl=1, ..., h, determines the logical satisPes Properties 5.1 and 5.2 and maintains the corssctne
identibPertarget id of the node at level along the path of the index structure. The proof of the Theorem has been
to target value (line 5), which is one of the children of omitted for space constraints.
the nodes inParents It then chooses a pair of distributed
covers fortarget id (line 6), that is, two nodes chosen among ~ Theorem 5.1:Let Z=(N,(Sy,S¢,Sp)) be a distributed
the children of nodes ifParents and allocated at different index, andtarget value be the target of an access. The
servers, also with respect target id (Debnition 5.1). The ~algorithm in Figure 3:
algorithm downloads from the storage servers the blocks . . -
of interest and decrypts their content retrieving the corre 1) sat!sbes Property 5.11r(n‘qrm V'S'b'l'ty).;
sponding nodes (line 7). It randomly chooses a swapping ) sau_sbe_s Property 5.2dntinuous moving
function = (Debnition 5.3) and reallocates accessed nodes 3) maintains unchanged the number of bI(_)ck_s st_ored at
accordingly; if the permutation causes a nod®arentsnot _each_ server for each level=0,..., A (distribution
to have a descendant at each server, a new pair of covers invariance; . .
is selected (lines 8D10). To guarantee the consistencyeof th 4) returns the unique node whetarget value is, or
tree structure, the algorithm updates the pointers to sedpp sho.uld.be, stgreda(:cess corrgctne}ss - .
nodes in their parents (i.e., nodesHarents, which are then 5) maintains an index representing the original unchained

encrypted and sent back to the different servers for storage B+-tree §tructure correctnegs



D. Protection analysis content of any of the blocks &, andSg. As an example,
) ) assuming that initially block,, stores node.,, after the prst

We evaluate the protection of our approach with respect t%lccessP(by,ny) becomes) (from 1) and P(b;,n,) becomes
guaranteeing conbdentiality of the accesses againsty®ssi 1/N (fromlO),lwith b; any block atS¢ or Sp. Also, P(bin;)
observers. We consider the servers as our observers as “"l?é(comesl/]\f (from'O), for each blockh; at serverS, and
have the most powerful view over the stored data and th¢y, each noden; initially stored atSg or Sg. Then, for the
accesses to them. The servers know (or can infer from theifccessed blocks, the information is immediately degraded
interactions with the client): the total number of blocks near 1o the level of lowest information. Overall knowledge
(nodes) and the heiglit of the index; the identiber of each 54t the correspondence between nodes and blocks will be
block b and its level in the tree; the identiPer of read andgfected by a complete degradation as a sequence of accesses
written blocks for each access operation. On the contraryg axecuted. (These observations have been conbrmed by a
they do not know and cannot infer the content and thgjetailed analysis and experimental evaluation.)
topology of the index (i.e., the pointers between parent and e note that if two (or even three) servers collude,
children), thanks to encryption of nodes. For simplicityt b {hejr initial knowledge as well as the ability to observe
without loss of generality, we focus our analysis only onyccesses to blocks improves. However, even in the worst
leaf blocks/nodes since the high fan-out of the index erssure 556 of full collusion (i.e., collusion among all servetsk
that internal nodes are involved in swapping operation®mory ,syledge of each server is progressively destroyed thanks

often than leaf nodes, resulting therefore more protected. {, the uncertainty (among the two other servers) of the new
Guaranteeing access conbdentiality means hiding to thgjocation of the accessed nodes.

servers the correspondence (as our distribution and swap
aim to do) between nodes and the blocks where they are VI. RELATED WORK
stored. We model the knowledge of an observer on the The problem of protecting data in the cloud requires
fact that a noden is stored at a block) as a prob- the investigation of different aspects (e.g., [6], [7],)[8h
ability value P(b,n), expressing the conbdence in suchparticular, approaches supporting query execution cbimsis
a knowledge, withP(b,n)=1 corresponding to certainty, attaching to the encrypted data some indexes used for bne-
and P(b,n)=rx to complete absence of knowledge, with grained information retrieval (e.g., [6], [9]), or in adept
N the set of leaves in the index. The uncertainty oveling specibc cryptographic techniques for keyword-based
the block storing a node;; €N is measured through the searches (e.g., [10]). The main problem of these soluti®ns i
entropy H,,=— leﬂ P(bj,n;)logy P(bs,n;), applied on that they protect only the conbdentiality of the data at.rest
the probabilitiesP(b;,n;) for all the blocksb; in the index. Solutions for protecting access and pattern conbdentialit
We evaluate the knowledge degradation of each serveare based on Private Information Retrieval (PIR) tech-
starting from the worst possible initial scenario, wherehea niques. Such solutions, however, do not protect content
server knows the exact correspondence between nodes aconbdentiality and suffer from high computational costs
blocks (i.e.,H,, = 0, sinceP(b,n)=1 whenn is allocated at (e.g., [11]), even when different copies of the data aresstor
block n, P(b,n)=0 otherwise). At every access request, theat multiple non-communicating servers (e.g., [12]). Reécen
swapping performed by the client moves the content of eachpproaches address the access and pattern conbdentiality
retrieved block to a server different from the one where itproblems through the debnition of techniques that dynam-
was initially stored. Hence, the entropf;, of each accessed ically change, at every access, the physical location of the
node evolves as a consequence of the access. Such evolutideita. Some proposals have investigated the adoption of the
clearly depends on the serverOs ability to observe access@tlivious RAM (ORAM) structure (e.qg., [13]), in particular
blocks. In our base scenario (no collusio®y, (but the same  with recent proposals aimed at making ORAM more practi-
applies toS; andSg) initially knows the node stored at each cal such as ObliviStore [2], Path ORAM [3], and Melbourne
of its blocks, that is,P(b,n)=1 if n is allocated at block Shuff3e [14]. ORAM has also been recently extended to
of serverSy; P(b,n)=1/N if n is not atSy andb is atSg operate in a distributed scenario [15], [16]. The goal okthe
or Sg, with V the number of blocks &; andSg, as server solutions is to reduce communication costs for the client
Sy does not have any knowledge of node-block allocatiorand then make ORAM-based approaches available also to
at the other serverd?(b,n)=0, otherwise. For each access, clients using lightweight devices. The privacy guarantees
Sy can observe the access to one block only, lsayAfter  provided by distributed ORAM approaches however rely
the access, the contentlgf is moved to a block thatis not  on the fact that storage servers do not communicate or do
stored atSy and on which it does not have any knowledgenot collude with each other. Our approach is instead more
(i.e., it is moved to any of the blocks &; and Sg with general and is specibcally aimed at enhancing protection
equal probability). Also, the content of one of the blocksguarantees provided to the client. Alternative solutiores a
b stored atSz or Sg is moved tob,. In other words, the based on the adoption of a tree-based structure (e.g., [17],
content ofb, after an access is, with equal probability, the [18]) to preserve the content and access conbdentiality.



The shuff3e index has been brst introduced in [1] and then[6] P. Samarati and S. De Capitani di Vimercati, OData piiotec
adapted in [19], [20] to accommodate concurrent accesses on
a shuff3e index stored at one storage server or to operate in a

distributed scenario with two storage providers. Thesa-sol

[7]

tions differ from the approach proposed in this paper since
they rely on a traditional shufing among accessed blocks
(which do not impose the constraint of changing the server
where nodes are allocated at each access). Furthermore, tl'tg
proposal in [19] provides lower protection guarantees, as

also demonstrated by our evaluation.

A different, although related, line of works is represented
by fragmentation-based approaches for protecting data con
[7], [21]). These solutions are based on

bdentiality (e.g.,
the idea of splitting sensitive data among different refadi

possibly stored at different storage servers, to protetsise
tive associations between attributes in the original iatat

Although based on a similar principle, fragmentation-ldase

9]

(10]

approaches only protect content conbdentiality, and ate ng11]

concerned with access and pattern conbdentiality.

VII. CONCLUSIONS

to them. Our approach is based on the use of a key-

based dynamically allocated data structure distributeet ov ;5

three independent servers. We have described our reference

data structure and illustrated how our distributed allmcat

and swapping techniques operate at every access to ensure

protection of access conbdentiality.
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