
Access Control Policies and Languages in Open
Environments

S. De Capitani di Vimercati1, S. Foresti1, S. Jajodia2, and P. Samarati1

1 Università degli Studi di Milano, 26013 Crema, Italia
{decapita, foresti, samarati}@dti.unimi.it

2 George Mason University, Fairfax, VA 22030-4444
jajodia@gmu.edu

One of the most challenging problems in managing large, distributed, and
heterogeneous networked systems is specifying and enforcing access control
security policies regulating interactions between parties and access to services
and resources. Recent proposals for specifying and exchanging access control
policies adopt different types of access control languages.

In this chapter, we review three different types of access control languages.
We start the chapter with an overview of the basic concepts on which access
control systems are based. We then illustrate logic-based, XML-based, and
credential-based access control languages. We conclude the chapter discussing
how policies expressed by using different languages and coming from different
systems can be combined.

1 Introduction

Access control is the process of mediating every request to resources and
data maintained by a system and determining whether the request should be
granted or denied. Access control plays an important role in overall system
security. The development of an access control system requires the definition
of the regulations (policies) according to which access is to be controlled and
their implementation as functions executable by a computer system. The ac-
cess control policies are usually formalized through a security model, stated
through an appropriate specification language, and then enforced by the ac-
cess control mechanism enforcing the access control service. The separation
between policies and mechanisms introduces an independence between protec-
tion requirements to be enforced on the one side, and mechanisms enforcing
them on the other. It is then possible to: i) discuss protection requirements
independently of their implementation, ii) compare different access control
policies as well as different mechanisms that enforce the same policy, and iii)

Sara
Line

2 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

design mechanisms able to enforce multiple policies. This latter aspect is par-
ticularly important: if a mechanism is tied to a specific policy, a change in the
policy would require changing the whole access control system; mechanisms
able to enforce multiple policies avoid this drawback. The formalization phase
between the policy definition and its implementation as a mechanism allows
the definition of a formal model representing the policy and its working, mak-
ing it possible to define and prove security properties that systems enforcing
the model will enjoy [30]. Therefore, by proving that the model is “secure” and
that the mechanism correctly implements the model, we can argue that the
system is “secure” (with respect to the definition of security considered [37]).

The definition of access control policies (and their corresponding models)
is far from being a trivial process. One of the major difficulty lies in the in-
terpretation of, often complex and sometimes ambiguous, real world security
policies and in their translation in well defined and unambiguous rules en-
forceable by a computer system. Many real world situations have complex
policies, where access decisions depend on the application of different rules
coming, for example, from laws, practices, and organizational regulations. A
security policy must capture all the different regulations to be enforced and,
in addition, must also consider possible additional threats due to the use of
a computer system. Given the complexity of the scenario, there is a need for
flexible, powerful, and expressive access control services to accommodate all
the different requirements that may need to be expressed, while at the same
time be simple both in terms of use (so that specifications can be kept under
control) and implementation (so to allow for its verification).

An access control system should include support for the following con-
cepts/features.

• Expressibility. An access control service should be expressive enough so
that the policy can suit all the data owner’s needs. To this purpose, several
of the most recent language designs rely on concepts and techniques from
logic, specifically from logic programming [16, 28, 32, 33, 34, 48]. Logic
languages are particularly attractive as policy specification languages (see
Sect. 3). One obvious advantage lies in their clean and unambiguous se-
mantics, suitable for implementation validation, as well as formal policy
verification. Second, logic languages can be expressive enough to formu-
late all the policies introduced in the literature. The declarative nature of
logic languages yields a good compromise between expressiveness and sim-
plicity. Their high level of abstraction, very close to the natural language
formulation of the policies, makes them simpler to use than imperative
programming languages. However, security managers are not experts in
formal logics, either, so generality is sometimes traded for simplicity.

• Efficiency. Access control efficiency is always a critical issue. Therefore,
simple and efficient mechanisms to allow or deny an access are key aspects
(see Sect. 3).

Access Control Policies and Languages in Open Environments 3

• Simplicity. One of the major challenges in the definition of a policy lan-
guage is to provide expressiveness and flexibility while at the same time
ensuring easiness of use and therefore applicability. An access control lan-
guage should therefore be based on a high level formulation of the access
control rules, possibly close to natural language formulation (see Sect. 4).

• Anonymity support. In open environments, not all access control deci-
sions are identity-based. Resource/service requesters depend upon their
attributes (usually substantiated by certificates) to gain accesses to re-
sources (see Sect. 5).

• Policy combination and conflict-resolution. If multiple modules (e.g., for
different authorities or different domains) exist for the specification of ac-
cess control rules, the access control system should provide a means for
users to specify how the different modules should interact, for example,
if their union (maximum privilege) or their intersection (minimum privi-
lege) should be considered (see Sect. 6). Also, when both permissions and
denials can be specified, the problem naturally arises of how to deal with
incompleteness (accesses for which no rule is specified) and inconsistency
(accesses for which both a denial and a permission are specified). Dealing
with incompleteness (requiring the authorizations to be complete would be
very impractical) requires support of a default policy either supported by
the system or specified by the users. Dealing with inconsistencies require
support for conflict resolution policies.

In this chapter, after a brief overview of the basic concepts on which ac-
cess control systems are based, we illustrate recent proposals and ongoing
work addressing access control in emerging applications and new scenarios.
The remainder of this chapter is structured as follows. Section 2 introduces
the basic concepts of access control. Section 3 presents a logic-based frame-
work for representing access control policies. Section 4 briefly describes some
XML-based access control languages and illustrates the XACML policy model
and language. XACML is a OASIS standard that provides a means for ex-
pressing and interchanging access control policies in XML. Section 5 intro-
duces recent solutions basing the access control decisions on the evaluation of
users’ attributes rather than on their explicit identity. Section 6 addresses the
problem of combining authorization specifications that may be independently
stated. We describe the characteristics that a policy composition framework
should have and illustrate some current approaches. Finally, Sect. 7 concludes
the chapter.

2 Basic Concepts

A first step in the development of an access control system is the identification
of the objects to be protected, the subjects that execute activities and request
access to objects, and the actions that can be executed on the objects, and that

4 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Personal

Purchase

hhhhhhhhhh
Sales

qqqqqq
Production

UUUUUUUUU

Internal Exports

MMMMM
RepA

rrrrr
RepB

MMMMM

Alice

¨̈
¨̈

¨̈
¨̈

¨̈

Bob Carol

rrrrrr
David Elvis Frank

KKKKK
George

Fig. 1. An example of user-group hierarchy

Documents

Invoices

oooooo
Orders

VVVVVVVVVVV

Sent

uuuuu
Received National

rrrrr
International

PPPPPP

IS01

||||
IS02 IR01 ON01

oooooo
ON02 OI01

nnnnnn
OI02 OI03

NNNNNN

Fig. 2. An example of object hierarchy

Employee

Admin-Staff

nnnnnn
Operative-Staff

RRRRRRR

Secretary

nnnnnn
Manager

PPPPPP
lllllll

Local-Chief

SSSSSSS

Fig. 3. An example of role hierarchy

must be controlled. More precisely, an access control system should support
the following concepts.

• Users (U) are entities requesting access to objects. Abstractions can be
defined within the domain of users. Intuitively, abstractions allow to define
group of users. Users together with their groups, denoted G, define a partial
order that introduces a hierarchy on the user domain. Figure 1 illustrates
an example of user-group hierarchy.

• Data Items (Obj) are the objects of the system that have to be protected
and on which access rights can be specified. Objects can be organized
in a hierarchical structure, defining sets of objects that can be referred
together with a given name. The definition of groups of objects (object
types), denoted T, introduces a hierarchy of objects and groups thereof.
For instance, a file system can be seen as an object hierarchy, where files
are single objects and directories are groups thereof. Figure 2 illustrates
an example of object hierarchy.

Access Control Policies and Languages in Open Environments 5

• Access Types (A) are the actions that can be executed on an object. The
actions may vary depending on the kind of objects considered.

• Roles (R) are sets of privileges. A user playing a role has the ability to
execute the privileges associated with the role. Roles can be organized
hierarchically. Figure 3 illustrates an example of role hierarchy.

• Administrative policies regulate who can grant and revoke authorizations
in the system.

Note that groups and roles are different concepts with two main differences:

• a group is a named collection of users and possibly other groups, and a
role is a named collection of privileges, and possibly other roles;

• while role can sometimes be activated and deactivated directly by users at
their discretion, the membership in a group cannot be deactivated.

These two concepts are not exclusive but complementary to each other.
The hierarchical structure of data items, users/groups, and roles can be for-
mally represented through a mathematical structure called hierarchy .

Definition 1 (Hierarchy). A hierarchy is a triple (X, Y,≤) where:

• X and Y are disjoint sets;
• ≤ is a partial order on (X ∪Y) such that each x ∈X is a minimal element

of (X∪Y); an element x ∈X is said to be minimal iff there are no elements
below it in the hierarchy, that is, iff ∀y∈ (X ∪ Y): y≤x ⇒ y=x.

According to this definition, X represents primitive elements (e.g., a user
or a file), and Y represents aggregate entities (e.g., a set of users or objects).

Given a system composed of the elements listed above, an authorization
specifies which authorization subjects can execute which actions on which
authorization objects. An authorization can then be represented as a triple
(s, o, a), indicating that authorization subject s can execute action a over
authorization object o.

In addition to positive authorizations, recent access control languages sup-
port also negative authorizations, that is, authorizations indicating that an
authorization subject cannot execute a stated action on the specified autho-
rization object. The combined use of positive and negative authorizations has
the great advantage of allowing an easy management of exceptions in policy
definition. For instance, if all users in the system but Alice can access a re-
source and we use only positive authorizations, it is necessary to specify for
each subject but Alice a triple indicating that user u can access resource r. By
contrast, with negative authorizations, we can simply state that Alice cannot
access r, supposing, as a default policy, that everybody can access r.

To represent both positive and negative access rights, authorization triples
become of the form (s, o, ±a), where +a indicates a positive authorization
and −a indicates a negative authorization.

6 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Given a set of authorizations explicitly specified over the elements in the
system, it is possible to obtain a set of derived authorizations obtained accord-
ing to a hierarchy-based derivation. Some of the most common propagation
policies (which include also some resolution policies for possible conflicts) are
described below [26].

• No propagation. Authorizations are not propagated. For instance, a triple
specified for a node is not propagated to its descendants. No propagation
is applicable when non-leaf nodes can appear in an access request and
therefore authorizations that apply to them as subject/object must be
considered (as it is, for example, the case of roles).

• No overriding. Authorizations of a node are propagated to its descendants.
• Most specific overrides. Authorizations of a node are propagated to its

descendants if not overridden. An authorization associated with a node n
overrides a contradicting authorization3 associated with any supernode of
n for all the subnodes of n.

• Path overrides. Authorizations of a node are propagated to its descendants
if not overridden. An authorization associated with a node n overrides
a contradicting authorization associated with a supernode n′ for all the
subnodes of n only for the paths passing from n. The overriding has no
effect on other paths.

The combined use of positive and negative authorizations brings now to
the problem of how the two specifications should be treated when conflict
authorizations are associated with the same node in a hierarchy. In these
cases, different decision criteria could be adopted, each applicable in specific
situations, corresponding to different conflict resolution policies that can be
implemented. Examples of conflict resolution policies are the following.

• No conflict. The presence of a conflict is considered an error.
• Denials take precedence. Negative authorizations take precedence.
• Permissions take precedence. Positive authorizations take precedence.
• Nothing takes precedence. Neither positive nor negative authorizations take

precedence.

It may be possible that after the application of a propagation policy and a
conflict resolution policy, some accesses are neither authorized nor denied (i.e.,
no authorization exists for them). A decision policy guarantees that for each
subject there exists a permission or a prohibition to execute a given access.
Two well known decision policies are the closed policy and the open policy.
The closed policy allows an access if there exists a positive authorization for
it, and denies it otherwise. The open policy denies an access if there exists a
negative authorization for it, and allows it otherwise.

3 Authorizations (s, o, +a) and (s′, o′, −a′) are contradictory if s = s′, o = o′, and
a = a′.

Access Control Policies and Languages in Open Environments 7

3 Logic-Based Access Control Languages

Several authorization models and access control mechanisms have been imple-
mented. However, each model, and its corresponding enforcement mechanism,
implements a single specified policy, which is built into the mechanism. As a
consequence, although different policy choices are possible in theory, each
access control system is in practice bound to a specific policy. The major
drawback of this approach is that a single policy simply cannot capture all
the protection requirements that may arise over time. Recent proposals have
worked towards languages and models able to express, in a single framework,
different access control policies, to the goal of providing a single mechanism
able to enforce multiple policies. Logic-based languages, for their expressive
power and formal foundations, represent a good candidate. The main advan-
tages of using a logic-based language can be summarized as follows:

• the semantic of a logic language is clear and unambiguous;
• logic languages are very expressive and can be used to represent any kind

of policy;
• logic languages are declarative and offer a better abstraction level than

imperative programming languages.

The first work investigating logic languages for the specification of au-
thorizations is the work by Woo and Lam [48]. Their proposal makes the
point for the need of flexibility and extensibility in access specifications and
illustrates how these advantages can be achieved by abstracting from the low
level authorization triples and adopting a high level authorization language.
Their language is essentially a many-sorted first-order language with a rule
construct, useful to express authorization derivations and therefore model au-
thorization implications and default decisions (e.g., closed or open policy).

In [5] the authors propose a temporal authorization model that supports
periodic access authorizations and periodic rules. More precisely, deductive
temporal rules with periodicity and order constraints are provided to derive
new authorizations based on the presence or absence of other authorizations
in specific periods of time. Another approach based on active rules, called role
triggers, has been presented in [6]. The authors extend the RBAC model by
adding temporal constraints on the enabling/disabling of roles.

Other logic-based access control languages support inheritance mecha-
nisms and conflict resolution policies. The Hierarchical Temporal Authoriza-
tion Model adopts the denials-take-precedence principle and does not dis-
tinguish between original and derived authorizations: an authorization can
override another one independently from the category to which they belong.
The main problem of this logic language is that it is not stratifiable. However,
it supports a dynamic form of stratification that guarantees a polynomial
computation time. A framework based on the C-Datalog language has also
been presented. The framework is general enough to model a variety of access
control models.

8 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Although these proposals allow the expression of different kinds of autho-
rization implications, constraints on authorizations, and access control poli-
cies, the authorization specifications may result difficult to understand and
manage. Also, the trade-off between expressiveness and efficiency seems to be
strongly unbalanced: the lack of restrictions on the language results in the
specification of models that may not even be decidable and implementable in
practice.

Starting from these observations, Jajodia et al. [26] worked on a proposal
for a logic-based language that attempted to balance flexibility and expres-
siveness on the one side, and easy management and performance on the other.
The language allows the representation of different policies and protection re-
quirements, while at the same time providing understandable specifications,
clear semantics (guaranteeing therefore the behavior of the specifications), and
bearable data complexity. In the remainder of this section, we will describe
this proposal in more details.

3.1 Flexible Authorization Framework

The Flexible Authorization Framework (FAF) [26] is a powerful and elegant
logic-based framework where authorizations are specified in terms of a locally
stratified rule base logic. FAF is based on an access control model that does
not depend on any policy but is capable of representing any policy through
the syntax of the model. In FAF, a data system to which protection must be
ensured is formally defined as follows.

Definition 2 (Data System). A data system (DS) is a 5-tuple
(OTH,UGH, RH,A, Rel) where:

• OTH= (Obj,T,≤OT) is an object hierarchy;
• UGH= (U, G,≤UG) is a user-group hierarchy;
• RH= (∅,R,≤R) is a role hierarchy;
• A is a set of actions;
• Rel is a set of relationships that can be defined on the different elements

of DS;
• OTH, UGH, and RH are disjoint.

Note that this definition of data system is very general as it may be used
to represent any system by appropriately instantiating the five components
listed above. Also, a system with no user-group, object, or role hierarchy can
be represented by this definition. For instance, a data system with no role
hierarchy is represented by a data system where x ≤R y iff x = y.

Given an authorization triple (s, o,±a), the authorization subject s can be
a user, a group, or a role and the corresponding hierarchy, called authorization
subject hierarchy (ASH), is intuitively obtained placing the two hierarchies
UGH and RH side by side. The authorization object o can be an object, a type,

Access Control Policies and Languages in Open Environments 9

propagation

policy

conflict resol.
& decision
policy

integrity
constraints

history

tabletable

authorization

(o,s,+a) granted/denied

Fig. 4. Functional authorization architecture [26]

or a role and the corresponding hierarchy, called authorization object hierarchy
(AOH), is obtained placing the OTH and the inverse of RH side by side. The
reason why the RH hierarchy is inverted, is to simplify the propagation rule
for authorization objects: an authorization over a set of objects propagates
down in the object hierarchy, while an authorization over a role propagates up
in the role hierarchy. By inverting the RH hierarchy, we can simply propagate
authorizations down in the authorization object hierarchy.

As depicted in Fig. 4, FAF includes the following components.

• A history table whose rows describe the accesses executed.
• An authorization table whose rows are authorizations composed of the

triples (s, o, 〈sign〉a), where s is the subject, o the data item, a the action
and 〈sign〉 may be ‘+’ if the action is allowed and ‘−’ if it is denied. This
is the set of explicitly specified authorizations.

• The propagation policy specifies how to obtain new derived authorizations
from those explicitly stored in the authorization table. Typically, derived
authorizations are obtained according to hierarchy-based derivation poli-
cies. However, derivation policies are not restricted to this particular form
of derivation. It is important to note that different propagation policies
can be adopted in different hierarchies (ASH, AOH) and that, in the same
structure, different sub-hierarchies may follow different policies.

• The conflict resolution policy describes how possible conflicts between the
(explicit and/or derived) authorizations should be solved.

• A decision policy defines the response that should be returned to each
access request. In case of conflicts or gaps (i.e., when an access is neither
authorized nor denied), the decision policy determines the answer. In many
systems, decisions assume either the open or the closed policy, where, by
default, access is granted or denied, respectively.

• A set of integrity constraints that may impose restrictions on the content
and output of the other components. Integrity rules can be used to individ-
uate errors in the hierarchies or in the explicitly specified authorizations,
or for implementing duty separation.

When a subject s requires the execution of action a on object o, the system
needs to verify whether the authorization (s, o, +a) or (s, o, −a) can be de-

10 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

rived using the authorization table, propagation policy, history table, conflict
resolution policy, and decision policy that have been defined in the system. If
a positive authorization is derived, then the access is allowed. Otherwise, if a
negative authorization is derived, the access is denied.

As previously discussed, FAF allows the representation of different propa-
gation policies, conflict resolution policies, and decision policies that a security
system officer (SSO) might want to use. However, these policies represent only
some of the possibilities and FAF is flexible enough to allow a SSO to express
what she needs for her applications. To address this issue, the functional au-
thorization architecture can be realized through the following approach:

• the authorization table is viewed as a database;
• policies are expressed by a restricted class of logic programs, called autho-

rization specification, which have certain properties;
• the semantics of authorization specifications is given through the well

known stable model semantics and well founded model semantics of logic
programs, ensuring thus the existence of exactly one stable model;

• accesses will be allowed or denied on the basis of the truth value of an
atom associated with the access in the unique stable model.

Accordingly, the authorization specification logic language (ASL) is a logic
language used to encode the system security needs. ASL is created from the
following alphabet.

• Constant symbols are members of the sets of users U, groups of users G,
objects Obj, types of objects T, roles R, and actions A.

• Variable symbols are variables ranging over the sets U, G, Obj, T, R, and
A.

• Predicate symbols are partitioned into three categories. The first category
contains predicates needed to express the access control policy :
– cando(o, s, ±a) explicitly represents the authorizations defined by the

SSO: it allows (or denies, depending on the sign) subject s to execute
action a on object o;

– dercando(o, s, ±a) represents authorizations derived by the system;
– do(o, s, ±a) represents the accesses that must be allowed or denied,

and are obtained after the application of the conflict resolution and
decision policies;

– done(o, s, r, a, t) keeps the history of the accesses executed. A fact of
the form done(o, s, r, a, t) indicates that s operating in role r executed
action a on object o at time t.

– over represents overriding policies in the authorization subject and/or
authorization object hierarchies;

– error signals errors in the specification or use of authorizations; it can
be used to enforce static and dynamic constraints on the specifications.

The second category of predicate symbols is the hie-predicates for the
evaluation of hierarchical relationships between the elements of the data

Access Control Policies and Languages in Open Environments 11

Propagation Policy Rules

No propagation dercando(o, s, +a) ← cando(o, s, +a).
dercando(o, s,−a) ← cando(o, s,−a).

No overriding dercando(o, s, +a) ← cando(o, s′, +a) & in(s, s′, ASH).
dercando(o, s,−a) ← cando(o, s′,−a) & in(s, s′, ASH).

Most specific overrides dercando(o, s, +a) ← cando(o, s′, +a) &
¬overAS(s, o, s′, +a) & in(s, s′, ASH).

dercando(o, s,−a) ← cando(o, s′,−a) &
¬overAS(s, o, s′,−a) & in(s, s′, ASH).

overAS(s, o, s′, +a) ← cando(o, s′′,−a) & in(s, s′′, ASH)&
in(s′′, s′, ASH)& s′′ 6= s′.

overAS(s, o, s′,−a) ← cando(o, s′′, +a) & in(s, s′′, ASH)&
in(s′′, s′, ASH)& s′′ 6= s′.

Path overrides dercando(o, s, +a) ← cando(o, s, +a).
dercando(o, s,−a) ← cando(o, s,−a).
dercando(o, s, +a) ← dercando(o, s′, +a) &

¬cando(o, s,−a) & dirin(s, s′).
dercando(o, s,−a) ← dercando(o, s′,−a) &

¬cando(o, s, +a) & dirin(s, s′).

Fig. 5. Rules enforcing different propagation policies on ASH

system (e.g., user’s membership in groups, inclusion relationships between
objects). There are two predicates:
– in(x, y, H) evaluates to true only if x ≤ y in the structure represented

by hierarchy H, where H is ASH or AOH;
– dirin(x, y, H) evaluates to true only if x is a direct descendant of y

in the hierarchy H, where H is ASH or AOH.
The third category of predicates is the rel-predicates that are used to
express different relationships between elements in the data system. These
predicates are not fixed by the model and are application specific. Exam-
ples of such predicates are the following:
– owner(o, s) specifies that subject s is the owner of object o in the

system;
– isuser(s), isgroup(g), and isrole(r) evaluate to true only if their

argument is a user, a group, or a role, respectively.

If p is one of the above-mentioned predicate symbols with arity n and
t1, . . . , tn are terms appropriate for p, then p(t1, . . . , tn) is an atom. A literal
is an atom or its negation. All these predicates, atoms and literals can be
exploited to express a policy. We now illustrate how each component in Fig. 4
is represented by a set of rules.

History table. It contains only done predicates to keep track of the past ac-
cesses performed by the users. The instances of the done predicate are
stored in a relation table with schema (Object, User, Role, Action, Time).
For instance, done(IS01, David, Admin, read, 15/05/2005 15:30) denotes

12 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

a read on object IS01 executed by David playing role Admin at time
15/05/2005 15:30 .

Authorization table. It contains a finite set of authorization rules of the form:

cando(o, s, 〈sign〉a) ← L1& . . . &Ln

where o is an object or an object type, s is a user or a group, 〈sign〉 is
either ‘+’ or ‘−’, a is an action, and L1, . . . , Ln are either done, hie- or
rel- literals. If these literals are evaluated to true, the authorization on
the left of the rule is granted. For instance, rule cando(IS02, s, +r) ←
in(s, Sales, ASH) & ¬done(IS02,s, w, t) states that members of group
Sales can read object IS02 if they have not already modified object IS02
at time t.

Propagation policies. The propagation policy is composed of two sets of rules:
overriding rules, stating when an authorization can override another one;
and derivation rules, representing the set of authorizations that can be
derived by the authorizations explicitly defined. Overriding rules can be
defined on the authorization subject hierarchy (overAS) or on the autho-
rization object hierarchy (overAO) and are rules of the form:

overAS(s, o, s′, 〈sign〉a) ← L1& . . . &Ln

overAO(o, o′, s, 〈sign〉a) ← L1& . . . &Ln

where o and o′ are objects or object types, s and s′ are users or groups,
〈sign〉 is either ‘+’ or ‘−’, a is an action, and L1, . . . , Ln are either cando,
done, hie-, or rel- literals. If these literals evaluate to true, the overriding
rule is applied.
The derivation rules are of the form:

dercando(o, s, 〈sign〉a) ← L1& . . . &Ln

where o is an object or an object type, s is a user or a group, 〈sign〉 is
either ‘+’ or ‘−’, a is an action, and L1, . . . , Ln are either cando, over,
dercando, done, hie-, or rel- literals. If these literals evaluate to true, the
derivation rule is applied. For instance, rule dercando(Received, s, +r)
← dercando(Orders, s, +r) derives a permission for a subject to read
object type Received if there exists an (explicit or implicit) authorization
for the subject to read object type Orders.
The set of dercando rules in the system is composed of all the autho-
rizations that can be derived through the propagation policy defined by
the SSO. Figure 5 illustrates the set of rules enforcing the most common
propagation policies on the ASH hierarchy.

Conflict resolution and decision policies. The conflict resolution and decision
policies allow the SSO to specify how conflicts are to be solved. A decision
rule is a rule of the form:

do(o, s, +a) ← L1& . . . &Ln

Access Control Policies and Languages in Open Environments 13

where o is an object or an object type, s is a user or a group, a is an
action, and L1, . . . , Ln are either cando, dercando, done, hie- or rel-
literals. In addition to these positive decision rules, there is also the rule:
do(o, s, −a)←¬do(o, s, +a). This rule guarantees the completeness of the
policy, that is, for each triple (o, s, a), one of the two do(o, s, +a) or do(o,
s, −a) holds. Intuitively, the set of atoms do(o, s, +a) specifies the set of
all authorized accesses. For instance, rule do(o, s, +r) ← ¬dercando(o, s,
+r) & ¬dercando(o, s, −r) & in(o, Invoices, AOH) states that a subject
s can read an object o if no authorization has been derived for s on an
object of type Invoices. Figure 6 illustrates possible rules enforcing the
most common conflict resolution and decision policies.

Integrity rules. Since there is a great potential for errors in the authorization
specifications, it is possible to specify integrity rules defining constraints
that must hold on the authorization specifications. An integrity rule is a
rule of the form:

error← L1& . . . &Ln

where L1, . . . , Ln are either cando, dercando, done, do, hie- or rel- liter-
als. If these literals evaluate to true, an error occurs. Restrictions imposed
through integrity constraints can be both general or specific to an ap-
plication. For instance, rule error← cando(o, s, +a) & cando(o, s, −a)
states that an error occurs if there are two contradictory explicit cando
predicates.
The integrity rules are evaluated after the access decision has been taken
and can block its execution if an error is derived. They are also checked
whenever a change occurs in some table used by the authorization frame-
work: if the change implies an error, the corresponding operation is denied.

Authorization specifications are stated as logic rules defined on the predi-
cates of the language. To ensure clean semantics and implementability, the for-
mat of the rules is restricted to guarantee (local) stratification of the resulting
program (see Fig. 7).4 The stratification also reflects the different semantics
given to the predicates: cando will be used to specify basic authorizations,
dercando will be used to enforce implication relationships and produce de-
rived authorizations, and do to take the final access decision. Stratification
ensures that the logic program corresponding to the rules has a unique sta-
ble model, which coincides with the well founded semantics [22]. Also, this
model can be effectively computed in polynomial time. The authors of FAF
also present a materialization technique for producing and storing the model
corresponding to a set of logical rules. The model is computed on the initial
specifications and updated with incremental maintenance strategies.

4 A program is locally stratified if there is no recursion among predicates going
through negation.

14 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Conflict Decision Rules

No conflict open error ← dercando(o, s, +a)&
dercando(o, s,−a).

do(o, s, +a) ← ¬dercando(o, s,−a).

No conflict closed error ← dercando(o, s, +a)&
dercando(o, s,−a).

do(o, s, +a) ← dercando(o, s, +a)&
¬dercando(o, s,−a).

Denials take p. open do(o, s, +a) ← ¬dercando(o, s,−a).

Denials take p. closed do(o, s, +a) ← dercando(o, s, +a)&
¬dercando(o, s,−a).

Permissions take p. open do(o, s, +a) ← dercando(o, s, +a).
do(o, s, +a) ← ¬dercando(o, s,−a).

Permissions take p. closed do(o, s, +a) ← dercando(o, s, +a).

Nothing takes p. open do(o, s, +a) ← ¬dercando(o, s,−a).

Nothing takes p. closed do(o, s, +a) ← dercando(o, s, +a)&
¬dercando(o, s,−a).

Additional closure rule do(o, s,−a) ← ¬do(o, s, +a).

Fig. 6. Conflict resolution and decision policies rules

Stratum Predicate Rules defining predicates

0 hie-predicates Base relations.
rel-predicates Base relations.
done Base relation.

1 cando Body may contain done, hie-, and rel- literals.

2 dercando Body may contain cando, dercando, done,
hie-, and rel- literals. Occurrences of
dercando literals must be positive.

3 do When head is of the form do(, , +a),
body may contain cando, dercando, done,
hie-, and rel- literals.

4 do When head is of the form do(o, s,−a),
body contains just one literal ¬do(o, s, +a).

5 error Body may contain do, cando, dercando,
done, hie-, and rel- literals.

Fig. 7. Rule composition and stratification of FAF

An Example of FAF Application

A simplified scenario is constructed to describe the application of the FAF
model and language. Consider an online computer store where objects are
organized according to the hierarchy in Fig. 2, and users are grouped as illus-
trated in Fig. 1. Suppose also that the system does not use roles.

Access Control Policies and Languages in Open Environments 15

Personal

Purchase
(Received,+r)

hhhhhhhhhhhhh Sales
(Sent,+r)

pppppp

JJJ
JJ

Production
(Order,+r)

WWWWWWWWWWWWWW

Internal
(National,+r)

Exports
(International,+r)

(National,-r)

JJJJ

sssss

RepA
(National,-r)

qqqqqq
RepB

KKKKKKK

Alice

Bob Carol

sssss
David Elvis Frank

NNNNNNN
George

Fig. 8. An example of labeled user-group hierarchy

The SSO defines the set of initial done, hie-, and rel- literals. For sim-
plicity, we assume that the system has no done predicates. The dirin-literals
necessary for the definition of the subject and object hierarchies follow the
arcs in the graphs in Fig. 1 and in Fig. 2, respectively.

From the dirin literals explicitly specified by the SSO, it is possible to
verify the validity of the in literals. The following are examples of protection
requirements, where r is used to denote the read action.

• Members of the Purchase group can read Received Invoices.
cando(o, s, +r) ← in(s, Purchase, ASH) & in(o, Received, AOH)

• Members of the Sales group can read Sent Invoices.
cando(o, s, +r) ← in(s, Sales, ASH) & in(o, Sent, AOH).

• Members of the Internal group can read National Orders.
cando(o, s, +r) ← in(s, Internal, ASH) & in(o, National, AOH).

• Members of the Exports group can read International Orders.
cando(o, s, +r) ← in(s, Exports, ASH) & in(o, International, AOH).

• Members of the Production group can read any kind of Orders.
cando(o, s, +r) ← in(s, Production, ASH) & in(o, Orders, AOH).

• Members of the RepA group cannot read National Orders.
cando(o, s, −r) ← in(s, RepA, ASH) & in(o, National, AOH).

• Members of the Exports group cannot read National Orders.

cando(o, s, −r) ← in(s, Exports, ASH) & in(o, National, AOH).

After the definition of these explicit authorizations, the SSO needs to
choose a propagation policy. Suppose that the most specific overrides principle
has been chosen and that the propagation is performed on the authorization
subject hierarchy ASH. First, for each explicit authorization (s, o, ±a), the
propagation process associates with subject s in the hierarchy a pair of the
form 〈obj ,±a〉. Figure 8 illustrates the resulting labeled hierarchy.

The authorizations are then propagated along the hierarchy thus obtaining
the following set of dercando literals.

• dercando(Received , Purchase, +r)
• dercando(Received , Alice, +r)
• dercando(Received , Bob, +r)
• dercando(Sent , Sales, +r)

16 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

• dercando(Sent , Internal , +r); dercando(National , Internal , +r)
• dercando(Sent , Exports, +r); dercando(International , Exports, +r);

dercando(National , Exports, −r)
• dercando(Sent , David , +r); dercando(International , David , +r);

dercando(National , David , −r)
• dercando(Sent , Carol , +r); dercando(International , Carol , +r);

dercando(National , Carol , +r); dercando(National , Carol , −r)5

• dercando(Orders, Production, +r)
• dercando(International , RepA, +r); dercando(National , RepA, −r)
• dercando(International , Elvis, +r); dercando(National , Elvis, −r)
• dercando(International , Frank , +r); dercando(National , Frank , −r)
• dercando(Orders, RepB , +r)
• dercando(Orders, George, +r)

It is easy to see that there are some conflicts. The first conflict arises
because members of the RepA group can read the objects in Orders and
cannot read objects in the subset National . However, according to the most
specific overrides principle, members of the group RepA can read Orders that
do not belong to the National category and cannot read objects in the National
category.

The second conflict involves user Carol who is a member of the group
Internal and group Exports and for which there is a positive and negative
authorization on National , respectively. In this case, the conflict can be solved
by applying, for example, the denials take precedence principle together with
the closed policy. The result of this last step is a set of do literals representing
all the triples (s, o, ±a) derivable in the structure.

We now examine some examples of access requests and analyze whether
these requests will be granted or denied.

Request 1. Alice requests to read object IS02.
Access denied . There is neither an explicit authorization nor an implicit
authorization and therefore, according to the default closed policy, the
access is denied.

Request 2. Carol requests to read object ON01.
Access denied . Object ON01 is a member of class National and according
to the denials take precedence principle Carol cannot read national orders.

Request 3. Frank requests to read object ON01.
Access denied . Frank is a member of group RepA, object ON01 is a mem-
ber of class National and, according to the most specific overrides princi-
ple, the RepA group cannot read national orders.

Request 4. Frank requests to read object OI01.
Access allowed . Frank is a member of group RepA and object OI01 is a
member of class Orders and is not a member of class National.

5 There is a conflict that cannot be solved at this point of the policy evaluation
process.

Access Control Policies and Languages in Open Environments 17

4 XML-Based Access Control Languages

Although logic-based access control models and languages are powerful and
expressive, they are not immediately suited to the Internet context, where
simplicity and easy integration with existing technology must be ensured.
Therefore, an interesting aspect to be addressed concerns the definition of a
language for expressing and exchanging policies based on a high level formula-
tion that, while powerful, can be easily interchangeable and both human and
machine readable. Insights in this respect can be taken from recent proposals
expressing access control policies as XML documents. Indeed, the eXtensible
Markup Language (XML) [49], a markup meta-language standardized by the
World Wide Web Consortium (W3C), is the standard language for informa-
tion exchange on the Internet and many XML-based access control languages
have been proposed. The first advantage of this class of access control lan-
guages is their simplicity in policy definition. Another important advantage
of XML-based access control languages is the interoperability, that consists
in the possibility of exchanging policies through different systems using the
same access control language. This feature is particularly interesting in an
open environment like the Internet, where a single system, which has to be
protected as a single entity, may be distributed over the Net.

Initially, XML-based access control languages were thought only for the
protection of resources that were themselves XML files [14, 15, 20, 21]. In [14,
15] authorizations can be positive and negative and can be defined both at
the document-level or at the Document Type Definition (DTD) level (in this
case authorizations propagate to all instances of the DTD). Authorizations
are characterized by a type field defining how the authorizations must be
treated with respect to propagation at finer granules and overriding (exception
support). The model in [29] supports read and write privileges. The authors
define three types of propagation policies: no propagation, propagation up (an
authorization referring to an element is propagated to all its parent elements)
or propagation down (an authorization referring to an element is propagated
to all its sub-elements). The conflict resolution policy is either “denials take
precedence” or “permissions take precedence”. The main contribution of this
paper is the definition of provisional authorizations that specify actions that
a user has to perform before obtaining a given privilege. The model in [21]
supports the read privilege only. The authors do not define any propagation
policy. The conflict resolution policy is based on the priority of the different
rules. More recently, in [20] has been proposed an approach that tries to
address the write privilege based on the non-standard XML update language
XUpdate. The author separates the existence of an XML value and its content
adding a new position privilege that allows to know the existence of a node
but not its content. Nodes tagged with a position privilege are shown with a
restricted label.

These proposals have the common characteristic that they present a
model for securing XML documents. Recent proposals instead use XML

18 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

to define languages for expressing protection requirements on any kind of
data/resources [2, 13, 39, 17]. Two relevant XML-based access control lan-
guages are WS-Policy [13] and the eXtensible Access Control Markup Lan-
guage (XACML) [17]. Based on the WS-Security [3], WS-Policy provides a
grammar for expressing Web service policies. The WS-Policy includes a set
of general messaging related assertions defined in WS-PolicyAssertions [11]
and a set of security policy assertions related to supporting the WS-
Security specification defined in WS-SecurityPolicy [44]. In addition, WS-
PolicyAttachment [12] defines how to attach these policies to Web services
or other subjects such as service locators. XACML is the result of a recent
OASIS standardization effort proposing an XML-based language to express
and interchange access control policies. XACML is designed to express autho-
rization policies in XML against objects that can themselves be identified in
XML. The XACML language has the great advantage that it can be used to
express a variety of different policies and has the basic functionalities of most
policy representation mechanisms. Moreover, XACML has standard exten-
sion points for defining new functions, data types, combining logic, and so on.
While XACML and WS-Policy share some common characteristics, XACML
has the advantage of enjoying an underlying policy model as a basis, resulting
in a clean and unambiguous semantics of the language [2]. For this reason,
XACML is the most common XML-based access control language used. In the
remainder of this Section, we illustrate XACML as our choice of language.

4.1 XACML Policy Definition

XACML relies on a model that provides a formal representation of the access
control security policy and its working. This modeling phase is essential to
ensure a clear and unambiguous language which could otherwise be subject
to different interpretations and uses. The main concepts of interest in the
XACML policy language model are rule, policy , and policy set .

An XACML policy has, as root element, either a Policy or a PolicySet. A
PolicySet is a collection of Policy or PolicySet. An XACML policy consists
of a set of rules, a target , an optional set of obligations, and a rule combining
algorithm. A Rule specifies a permission (permit) or a denial (deny) for a
subject to perform an action on an object. A Target basically consists of a
simplified set of conditions for the subject, resource, and action that must
be satisfied for a policy to apply to a given request. If all the conditions of
a Target are satisfied, then its associated Policy (or PolicySet) applies
to the request. An Obligation is an operation that has to be performed in
conjunction with the enforcement of an authorization decision. Each Policy
also defines a rule combining algorithm used for reconciling the decisions each
rule makes. The final decision value, called authorization decision, is the value
of the policy as defined by the rule combining algorithm. An authorization
decision can be permit, deny, not applicable (when no applicable policies or
rules could be found), or indeterminate (when some errors occurred during

Access Control Policies and Languages in Open Environments 19

the access control process). XACML defines different combining algorithms
such as deny overrides (i.e., denials take precedence), permit overrides (i.e.,
permissions take precedence), first applicable (i.e., the first applicable rule is
considered), and only-one-applicable (i.e., a deny or permit result is obtained
only if exactly one rule is applicable).

The PolicySet element is similar to the Policy element and consists of a
set of policies (instead of rules), a target , an optional set of obligations, and
a policy combining algorithm (instead of a rule combining algorithm).

The Rule element specifies the actual conditions under which access is
to be allowed or denied. The components of a rule are an optional target ,
an effect , and a condition. The target defines the set of resources, subjects,
and actions to which the rule is intended to apply. The effect of the rule can
be permit or deny. The condition represents a boolean expression that may
further refine the applicability of the rule.

An important feature of XACML is that a rule is based on the
definition and evaluation of attributes corresponding to specific char-
acteristics of a subject, resource, action, or environment. Any request
is mainly composed of attributes that will be compared to attribute
values in a policy to make an access decision. Attributes are identi-
fied by the SubjectAttributeDesignator, ResourceAttributeDesignator,
ActionAttributeDesignator, and EnvironmentAttributeDesignator ele-
ments. These elements use the AttributeValue element to define the value
of a particular attribute. Alternatively, the AttributeSelector element can
be used to specify where to retrieve a particular attribute. Note that both
the attribute designator and attribute selector elements can return multiple
values. To this reason, XACML provides an attribute type, called bag , that
is an unordered collection and can contain duplicate values for a particular
attribute. To correctly handle the data type bag, XACML has a powerful set
of functions that can work on arbitrary collections of values and return any
kind of attribute value supported in the system. Functions can also be nested,
that is, the output of a function is the input of another. The XACML defines a
set of basic functions that can be enriched by adding application-specific func-
tions. Since often resources are represented in a hierarchical structure (e.g.,
file system), XACML v. 2.0 introduces a method for handling hierarchical
resources (see Sect. 2). More precisely, XACML v. 2.0 provides a mechanism
for:

• representing the identity of a node;
• requesting access to a node;
• stating policies that apply to one or more nodes.

The hierarchy can be both a tree or a forest and cannot have cycles. It is
important to note that there are two different ways for representing a resource
in a hierarchy [42]. In the first one, the hierarchy to which the node belongs
is represented as a XML document and the resource is represented as a node
in the XML document. In the second case, the hierarchy is not represented

20 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

as a XML document and has no representation. Analogously, subjects can
be hierarchically represented (see Sect. 2) but XACML does not offer any
functionality for managing groups of subjects. This is mainly due to the fact
that XACML is used in distributed systems, consequently the resource handler
cannot know the whole user-group hierarchy. However, XACML provides a
way for checking at any time if a user belongs to a specific group: when a
request for a resource is submitted, the resource handler checks the requester’s
properties, as these are automatically inserted in the same request. Among
these properties, there is the set of groups to which the user belongs. XACML
also supports the role-based access control [19].

As a simple example of policy, consider the example introduced in Sect. 3.1.
Suppose that the online computer store defines the following high level policy:
“Members of the Sales group can read invoice IS02”.

Figure 9 shows the XACML policy corresponding to this
high level policy. The policy applies to requests on the
http://www.example.com/documents/invoices/sent/IS02.xml resource.
It has one rule with a target that requires a read action and a condition that
evaluates to true only if the subject is a member of the group Sales.

4.2 XACML Request and Response

XACML defines also a standard format for expressing requests and responses.
Each request contains attributes for the subject, resource, action, and, option-
ally, for the environment. More precisely, each request includes exactly one set
of attributes for the resource and action and at most one set of environment
attributes. There may be multiple sets of subject attributes each of which is
identified by a category URI.

A response element contains one or more results each of which corresponds
to the result of an evaluation. Each result contains three elements, namely
Decision, Status, and Obligations. The Decision element specifies the
authorization decision, the Status element indicates if some error occurred
during the evaluation process, and the optional Obligations element states
the obligations to fulfill.

As an example, suppose that Carol wants to read the
http://www.example.com/documents/invoices/sent/IS02.xml resource.
Figure 10 illustrates the corresponding XACML request. This request is
compared with the XACML policy in Fig. 9. The result is that the user is
allowed to access the requested resource.

Access Control Policies and Languages in Open Environments 21

<Policy PolicyId="SentInvoice" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:
rule-combining-algorithm:deny-overrides">

<Target>
<Subjects>

<AnySubject/>
</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">
http://www.example.com/documents/invoices/sent/IS02.xml

</AttributeValue>
<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#anyURI"
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>

<AnyAction/>
</Actions>

</Target>
<Rule RuleId="ReadRule" Effect="Permit">

<Target>
<Subjects>

<AnySubject/>
</Subjects>
<Resources>

<AnyResource/>
</Resources>
<Actions>

<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
read

</AttributeValue>
<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>
</Action>

</Actions>
</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="group"/>

</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

Sales
</AttributeValue>

</Condition>
</Rule>

</Policy>

Fig. 9. An example of XACML policy

4.3 XACML Architecture

Figure 11 illustrates the main entities involved in the XACML domain. The
standard gives a definition of these concepts that we summarize as follows.

• The Policy Evaluation Point (PEP) module receives initially the access
request in a naive format and passes it to the Context Handler. Similarly,

22 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

<Request>
<Subject>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">

<AttributeValue>Carol@example.com</AttributeValue>
</Attribute>
<Attribute AttributeId="group" DataType="http://www.w3.org/2001/XMLSchema#string"

Issuer="administrator@example.com">
<AttributeValue>Sales</AttributeValue>

</Attribute>
</Subject>
<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">

<AttributeValue>http://www.example.com/documents/invoices/sent/IS02.xml
</AttributeValue>

</Attribute>
</Resource>
<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>read</AttributeValue>
</Attribute>

</Action>
</Request>

Fig. 10. An example of XACML request

when a decision has been taken by the decision point, PEP enforces the
access decision that it receives from the Context Handler.

• The Policy Decision Point (PDP) module receives an access request and
interacts with the PAP that encapsulates the information needed to iden-
tify the applicable policies. It then evaluates the request against the ap-
plicable policies and returns the authorization decision to the Context
Handler module.

• The Policy Administration Point (PAP) module is an interface for search-
ing policies. It retrieves the policies applicable to a given access request
and returns them to the PDP module.

• The Policy Information Point (PIP) module provides attribute values
about the subject, resource, and action. It interacts directly with the Con-
text Handler.

• The Context Handler translates the access requests in a native format into
a canonical format. Basically, it acts as a bridge between PDP and PEP
modules and it is in charge for retrieving attribute values needed for policy
evaluation.

• The Environment provides a set of attributes that are relevant to take
an authorization decision and are independent from a particular subject,
resource, and action.

• The Obligations Service module manages obligations, which are the op-
erations that should be performed by the PEP when enforcing the final
authorization decision.

Access Control Policies and Languages in Open Environments 23

Access
Requester

2.Access
Request

// PEP 13.Obligations //

3.Request

²²

Obligations
Service

PDP 5.Attribute
Queries

//

11.Response
Context

//

Context
Handler

12.Response

OO

6.Attribute
Query

²²

4.Request
Notification

oo

10.Attributesoo

Resource9.Resource
Content

oo

7c.Resource
Attributes

zzvvvvvvvvvvvvvvvvvv

PIP

8.Attribute

OO

PAP

1.Policy

OO

Subjects

7a.Subject
Attributes

OO

Environment

7b.Environment
Attributes

ddHHHHHHHHHHHHHHHHHH

Fig. 11. XACML overview [17]

• The Access Requester module makes requests to the system in a naive
form.

• A Resource is a service or a data collection available for requests.
• The Subjects are the actors of the system; they usually have attributes

that can be used in predicates.

The XACML data-flow (Fig. 11) is not limited to the phase of evaluating
an access request but involves also an initialization phase. More precisely, the
data-flow consists of the following steps.

1. The policies are made available by the PAP to the PDP to fulfill the
resource owner needs.

2. The access requester communicates her request to the PEP module in a
naive format.

24 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

3. The PEP transmits the original request to the Context Handler, possibly
together with attributes of the subject, resource, action and environment
involved in the request.

4. The Context Handler builds XACML request context , with the informa-
tion provided by the PEP and sends it to the PDP.

5. In case of additional attributes of the subject, resource, action, or envi-
ronment are needed, the PDP asks for them to the Context Handler.

6. The Context Handler sends the attribute request coming from the PDP
to the PIP module.

7. The PIP module retrieves the attributes interacting directly with Subject,
Resource, and Environment.

8. The PIP sends the attributes just obtained to the Context Handler.
9. The Context Handler inserts the resource in the context created at step

4.
10. The attributes obtained from the PIP and eventually the resource involved

in the access request are sent by the Context Handler to the PDP. The
PDP can now evaluate the policies and take a decision.

11. The PDP sends to the Context Handler the XACML response context
that includes the final decision.

12. The Context Handler translates the XACML response context in the naive
format used by the PEP module and sends the final response to the PEP.

13. The PEP fulfills the obligations included in the response and, if the access
is permitted, the PEP grants access to the resource. Otherwise, the access
is denied.

Although XACML is suitable for a variety of different applications, the
PDP module needs to receive standardized input and returns standardized
output. Therefore, any implementation of XACML has to be able to translate
the attribute representation in the application environment (e.g., SAML or
CORBA) in the corresponding XACML context.

5 Credential-Based Access Control Languages

Open environments are characterized by a number of systems offering differ-
ent services. In such a scenario, interoperability is a very important issue and
traditional assumptions for establishing and enforcing access control regula-
tions do not hold anymore. A server may receive requests not just from the
local community of users, but also from remote, previously unknown users.
The server may not be able to authenticate these users or to specify autho-
rizations for them (with respect to their identity). The traditional separation
between authentication and access control cannot be applied in this context,
and alternative access control solutions should be devised. A possible solution
to this problem is represented by the use of digital certificates (or creden-
tials), representing statements certified by given entities (e.g., certification

Access Control Policies and Languages in Open Environments 25

authorities), which can be used to establish properties of their holder (such
as identity, accreditation, or authorizations) [18, 23].

The development of access control systems based on credentials is not a
simple task and the following issues need to be investigated [10].

• Ontologies. Due to the openness of the scenario and the richness and vari-
ety of security requirements and attributes that may need to be considered,
it is important to provide parties with a means to understand each other
with respect to the properties they enjoy (or request the counterpart to
enjoy). Therefore, common languages, dictionaries, and ontologies must be
developed.

• Client-side and server-side restrictions. In an open scenario, mutual access
control is an important security feature in which a client should be able
to prove its eligibility for a service, and the server communicates to the
client the requirements it needs to satisfy to get access.

• Credential-based access control rules. It is necessary to develop languages
supporting access control rules based on credentials and these languages
have to be flexible and expressive enough for users. The most important
challenge in defining a language is the trade off between expressiveness and
simplicity: the language should be expressive enough for defining different
kinds of policies and simple enough for the final user.

• Access control evaluation and outcome. Users may be occasional and they
may not know under what conditions a service can be accessed. Therefore,
to make a service “usable”, access control mechanisms cannot simply re-
turn “yes” or “no” answers. It may be necessary to explain why accesses
are denied, or - better - how to obtain the desired permissions. Therefore,
the system can return an undefined response meaning that current infor-
mation is insufficient to determine whether the request can be granted or
denied. For instance, suppose that a user can access a service if she is at
least eighteen and can provide a credit card number. Two cases can occur:
i) the system knows that the user is not yet eighteen and therefore returns
a negative response; ii) the user has proved that she is eighteen and the
system returns an undefined response together with the request to provide
the number of a credit card.

• Privacy-enhanced policy communication. Since the server does not return
a simple yes/no answer to access requests, but returns the set of creden-
tials that clients have to submit for obtaining access, there is a need for
correctly and concisely representing them. The naive way to formulate a
credential request, that is, giving the client a list with all the possible sets
of credentials that would enable the service, is not feasible, due to the large
number of possible alternatives. Also, the communication process should
not disclose “too much” of the underlying security policy, which might
also be regarded as sensitive information. Analogously, the client should
be able to select in private a minimal set of credentials whose submission
will authorize the desired service.

26 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Blaze et al. [8] presented an approach for accessing services on the Web.
This work is therefore limited to the Web scenario and is based on identity
certificates only. The first proposals investigating the application of credential-
based access control regulating access to a server were made by Winslett et
al. [38, 47]. Here, access control rules are expressed in a logic language and
rules applicable to an access can be communicated by the server to clients.
In [46, 50] the authors investigate trust negotiation issues and strategies that a
party can apply to select credentials to submit to the opponent party in a nego-
tiation. More recently, in [50] the PRUdent NEgotiation Strategy (PRUNES)
has been presented. This strategy ensures that the client communicates its
credentials to the server only if the access will be granted and the set of cer-
tificates communicated to the server is the minimal necessary for granting it.
Each party defines a set of credential policies that regulates how and under
what conditions the party releases its credentials. The negotiation consists of
a series of requests for credentials and counter-requests on the basis of the
parties’ credential policies. The credential policies established can be graph-
ically represented through a tree, called negotiation search tree, composed of
two kinds of nodes: credential nodes, representing the need for a specific cre-
dential, and disjunctive nodes, representing the logic operators connecting the
conditions for credential release. The root of a tree node is a service (i.e., the
resource the client wants to access). The negotiation can therefore be seen as a
backtracking operation on the tree. The backtracking can be executed accord-
ing to different strategies. For instance, a brute-force backtracking is complete
and correct, but is too expensive to be used in a real scenario. The authors
therefore propose the PRUNES method that prunes the search tree without
compromising completeness or correctness of the negotiation process. The ba-
sic idea is that if a credential C has just been evaluated and the state of the
system is not changed too much, than it is useless to evaluate again the same
credential, as the result will be exactly as the result previously computed.

It has been demonstrated that the PRUNES method is correct and that the
communication time is O(n2) and the computational time is O(n ·m), where
n is the number of credentials involved in the trust establishment process,
and m is the total size of the credential disclosure policies related to the same
credentials.

The same research group proposed also a method for allowing parties
adopting different negotiation strategies to interoperate through the defini-
tion of a Disclosure Tree Strategy (DTS) family [52]. The authors show that
if two parties use different strategies from the DST family, they are able to
establish a negotiation process. The DTS family is a closed set, that is, if a
negotiation strategy can interoperate with any DST strategy, it must also be
a member of the DST family.

In [51] a Unified Schema for Resource Protection (UniPro) has been pro-
posed. This mechanism is used to protect the information in policies. UniPro
gives (opaque) names to policies and allows any named policy P1 to has its
own policy P2 meaning that the contents of P1 can only be disclosed to parties

Access Control Policies and Languages in Open Environments 27

who have shown that they satisfy P2. Another approach for implementing ac-
cess control based on credentials is the Adaptive Trust Negotiation and Access
Control (ATNAC) [36]. This method grants or denies access to a resource
on the basis of a suspicion level associated with subjects. The suspicion level
is not fixed but may vary on the basis of the probability that the user has
malicious intents. In [43] the authors propose to apply the automated trust
negotiation technology for enabling secure transactions between portable de-
vices that have no pre-existing relationship.

In [53] the same research group proposed a negotiation architecture, called
TrustBuilder, that is independent from the language used for policy definition
and from the strategies adopted by the two parties for policy enforcement.

Other logic-based access control languages based on credentials have been
introduced. For instance, D1LP and RT [32, 33, 34], the SD3 language [28],
and Binder [16]. In [27, 48] logic languages are adopted to specify access
restrictions in a certificate-based access control model.

5.1 A Credential-Based Access Control Language

A first attempt to provide a uniform framework for attribute-based access
control specification and enforcement was presented by Bonatti and Samarati
in [10]. Like in previous proposals, access regulations are specified as logical
rules, where some predicates are explicitly identified. Each party has a portfo-
lio, that is, a collection of credentials and declarations (unsigned statements),
and has associated a set of services that can provide. Credentials are essen-
tially digital certificates, and must be unforgeable and verifiable through the
issuing certificate authority’s public key; declarations are instead statements
made by the user herself, that autonomously issues a declaration. Abstrac-
tions can be defined on services, grouping them in sets, called classes. The
main advantage of this proposal is that it allows to exchange the minimal
set of certificates, that is, client communicates the minimal set of certificates
to the server, and the server releases the minimal set of conditions required
for granting access. To this purpose, the server defines a set of service acces-
sibility rules, expressing the necessary and sufficient conditions for granting
access to a resource. On the other hand, both clients and severs can specify a
set of portfolio disclosure rules, used to establish the conditions under which
credentials and declarations may be released.

The rules both in the service accessibility and portfolio disclosure sets are
defined through a logic language. The language includes a set of predicates
whose meaning is expressed on the basis of the current state. The state in-
dicates the parties’ characteristics and the status of the current negotiation
process, that is, the certificates already exchanged, the requests made by the
two parties, and so on. The basic predicates of the language are the following.

• credential(c, K) evaluates to true if the current state contains certifi-
cate c verifiable using key K.

28 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

negotiation
persistent/

State

Portfolio

declarations
credentials/

Policy

information
release

����
����
����
����

negotiation
persistent/

State

Portfolio

declarations
credentials/

Policy

services/
info. release

����
����
����
����

service request

request for prerequisites P

requirements R request

prerequisites P

requirements R’ counter-req.

R’

R

service granted

ServerClient

Fig. 12. Client-server negotiation

• declaration(d) evaluates to true if the current state contains declaration
d, where d is of the form attribute-name=value-term.

• cert-authority(CA, KCA) evaluates to true if the party using it in her
policy trusts certificates issued by certificate authority CA, whose public
key is KCA.

• A set of non predefined predicates necessary for evaluating the current
state values; these predicates can evaluate both the persistent and the
negotiation state. The persistent state contains information that is stored
on the site and is not related to a single negotiation but to the party itself.
The negotiation state is related to the information on a single negotiation
and is removed at the end of the same.

• A set of non predefined abbreviation predicates that are used to abbreviate
requirements in the negotiation phase.

• A standard set of mathematical built-in predicates, such as =, 6=, and ≤.

The rules for service accessibility and portfolio disclosure have, in their
body, a composition of the above-mentioned predicates, and in their head the
specification of the services accessible or the certificates releasable according
to the same rule. Figure 12 illustrates the client/server interaction that can
be summarized as follows.

1. The client sends a request for a service to the server.
2. The server asks to the client a set of prerequisites, that is, a set of necessary

conditions for granting access.
3. The client sends back the required prerequisites.
4. If the prerequisites are sufficient, than the server individuates the creden-

tials and declarations needed to grant access to the resource.
5. The client evaluates the requests against its portfolio release rules and

makes, eventually, some counter-requests.
6. The server sends back to the client the required certificates and declara-

tions.

Access Control Policies and Languages in Open Environments 29

7. The client fulfills the server’s requests.
8. The service is then granted to the client.

Since there may exist different policy combinations that may bring the
access request to satisfaction, the communication of credentials and/or dec-
larations could be an expensive task. To overcome this issue, the abbreviation
predicates are used to abbreviate requests. Besides the necessity of abbrevia-
tions, it is also necessary for the server, before releasing rules to the client, to
evaluate state predicates that involve private information. For instance, the
client is not expected to be asked many times the same information during
the same session and if the server has to evaluate if the client is considered or
not trusted, it cannot communicate this request to the client itself.

Communication of requisites to be satisfied by the requester is then based
on a filtering and renaming process applied on the server’s policy, which ex-
ploits partial evaluation techniques in logic programs. The authors formally
prove that the set of requirements that enable a service under the original
policy coincides with the requirements specified by the filtering rules.

6 Policy Composition

In many real world situations, access control needs to combine restrictions
independently stated that should be enforced as one, while retaining their
independence and administrative autonomy. For instance, the global policy
of a large organization can be the combination of the policies of its different
departments and divisions as well as of externally imposed constraints (e.g.,
privacy regulations); each of these policies should be taken into account while
remaining independent and autonomously managed. Policy composition is an
orthogonal aspect with respect to the ones described in the previous sections,
as policy composition should be independent from the languages adopted by
each single entity.

In [9], the authors presented the following criteria that a composition
framework for access control policies should satisfy.

• Heterogeneous policy support. The framework should support policies ex-
pressed in different languages and enforced by different mechanisms.

• Support of unknown policies. The framework should support policies that
are not known a priori or that are only partially defined. Policies are
therefore treated as black-boxes that can be queried at access control time
and return a correct and complete response.

• Controlled interference. Policies cannot simply be merged as this
may cause interferences and side effects. For instance, the accesses
granted/denied might not correctly reflect the specifications anymore.

• Expressiveness. The language should support different methods for com-
bining policies, without changing the input specifications and without ad-
hoc extensions to authorizations.

30 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

• Support of different abstraction levels. The composition should highlight
the different components and their interplay at different levels of abstrac-
tion.

• Formal semantics. The composition language should be declarative, im-
plementation independent, and based on a solid framework to avoid am-
biguity.

Various models have been proposed to reason about security policies [1,
24, 25, 35]. In [1, 25] the authors focused on the secure behavior of program
modules. McLean [35] proposed a formal approach including combination op-
erators: he introduced the algebra of security, that is a Boolean algebra that
enables to reason about the problem of policy conflict, arising when differ-
ent policies are combined. However, even though this approach permits to
detect conflicts between policies, it did not propose a method to resolve the
conflicts and to construct a security policy from inconsistent sub-policies. Hos-
mer [24] introduced the notion of meta-policies (i.e., policies about policies),
an informal framework for combining security policies. Subsequently, Bell [4]
formalized the combination of two policies with a function, called policy com-
biner , and introduced the notion of policy attenuation to allow the compo-
sition of conflicting security policies. Other approaches are targeted to the
development of a uniform framework to express possibly heterogeneous poli-
cies [7, 26, 27, 31, 48]. A different approach has been illustrated in [9] where
the authors proposed an algebra for combining security policies together with
its formal semantics. Following this work, Jajodia et al. [45] presented a propo-
sitional algebra for policies with a syntax consisting of abstract symbols for
atomic policy expressions and composition operators. This framework has two
classes of operators: internal and external . In the following, we will explain
more in details the algebra for policy composition presented in [9].

6.1 An Algebra for Composing Access Control Policies

The need for a policy composition framework by which different component
policies can be integrated while retaining their independence was first identi-
fied in [9]. Here, the authors propose an algebra of security policies together
with its formal semantics and illustrate how complex policies can be formu-
lated as expressions of the algebra. A policy is defined as a set of triples of the
form (s,o,a), where s is a constant in (or a variable over) the set of subjects S,
o is a constant in (or a variable over) the set of objects Obj, and a is a constant
in (or a variable over) the set of actions A. Here, complex policies can then be
obtained by combining policy identifiers, denoted Pi, through the algebra op-
erators. The proposed algebra is parametric with respect to two languages: the
authorization constraint language, used to specify the conditions under which
a ground authorization is valid; and the rule language, used to state how a set
of ground authorizations can be closed by deriving new authorizations from
the ground set.

Access Control Policies and Languages in Open Environments 31

Algebra Syntax and Semantics

We are now ready to define the syntax and semantics of the algebra. Formally,
the syntax is given by the following BNF grammar:

E ::=id|E + E|E&E|E − E|E∧C|o(E, E,E)|E ∗R|T (E)|(E)
T ::= τ id.E

where id is a unique policy identifier, E is a policy expression, T is a construct,
called template, C is a construct describing constraints, and R is a construct
describing rules. The order of evaluation of operators is determined by the
precedence which is (from higher to lower) τ , ., + and & and -, * and ∧.

The semantics is a function mapping each policy expression in a set of
ground authorizations and each template is a function over policies. Each
policy identifier is mapped to sets of triples by environments.

Definition 3 (Environment). An environment e is a partial mapping from
policy identifiers to sets of authorization triples. By e[X/S] we denote a mod-
ification of environment e such that

e[X/S](Y) =
{

S if Y = X
e(Y) otherwise

The semantic of an identifier X in the environment e can be denoted as
[[X]]e = e(X). The operators of the algebra are defined as follows.

• Addition (+). It merges two policies by returning their union.

[[P1 + P2]]e = [[P1]]e ∪ [[P2]]e
Intuitively, additions can be applied in any situation where accesses can be
authorized if allowed by any of the component policies (maximum privilege
strategy).

• Conjunction (&). It merges two policies by returning their intersection.

[[P1&P2]]e = [[P1]]e ∩ [[P2]]e
This operator enforces the minimum privilege strategy.

• Subtraction (−). It deletes from a policy all the accesses in a second policy.

[[P1 − P2]]e = [[P1]]e \ [[P2]]e
Intuitively, subtraction specifies exceptions to statements made by a policy,
and has the same functionalities of negative authorizations in existing
approaches without introducing conflicts.

• Closure (∗). It closes a policy under a set of derivation rules.

[[P ∗R]]e =closure(R, [[P]]e)

32 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

The closure of policy P under derivation rules R produces a new policy
that contains all the authorizations in P and those that can be derived
evaluating R on P , according to a given semantics. The derivation rules
in R can enforce, for example, an authorization propagation along a pre-
defined subject or object hierarchy.

• Scoping Restriction (∧). It restricts the applicability of a policy to a given
subset of subjects, objects, and actions of the system.

[[P∧1 c]]e = {t ∈IN P IN e | t satisfy c}
where c is a condition. It is useful to enforce authority confinement (e.g.,
authorizations specified in a given component can be referred only to spe-
cific subjects and objects).

• Overriding (o). It overrides a portion of policy P1 with the specifications
in policy P2 and the fragment that is to be substituted is specified by a
third policy P3.

[[o(P1, P2, P3)]]e = [[(P1 − P3) + (P2&P3)]]e
• Template(τ). It defines a partially specified (i.e., parametric) policy that

can be completed by supplying the parameters.

[[τX.P]]e(S) = [[P]]e[S/X]

where S is the set of all policies, and X is a parameter. Templates are
useful for representing policies where some components are to be specified
at a later stage. For instance, the components might be the result of further
policy refinement, or might be specified by a different authority.

The algebraic operators just described have also a graphical representation
summarized in Fig. 13.

The formal semantics on which the algebra is based allows us to reason
about policy specifications and proves properties on them.

Evaluating Policy Expressions

Enforcement of compound policies is based on a translation from policy ex-
pressions into logic programs, which provide executable specifications compat-
ible with different evaluation strategies. In particular, the following strategies
can be applied:

• Materialization. The policy expressions are evaluated thus determining the
set of ground authorization terms corresponding to the accesses allowed
by the policy. This strategy can be applied when all the individual policies
are known and reasonably static.

• Partial materialization. Partial materialization can be considered mainly
for two reasons. First, some of the component policies may be unknown at
materialization time (black-box policies); clearly, such policies cannot be

Access Control Policies and Languages in Open Environments 33

Operator Semantics [[]]e Graphical representation

P1 + P2 [[P1]]e ∪ [[P2]]e P2

+

P1

P1

P2

+

P1&P2 [[P1]]e ∩ [[P2]]e P2P1

&

P1

P2

&

P1 − P2 [[P1]]e \ [[P2]]e P2P1

-

P1

P2

-

P ∗ R closure(R, [[P]]e)

R

P
P

R

Pˆc {t ∈ [[P]]e | t satisfy c}
P

c

P c

o(P1,P2,P3) [[(P1−P3) + (P2&P3)]]e
P1 P2 P3

o

P2

P1
P3

Fig. 13. Operators of the algebra and their graphical representation

materialized. Second, some policies may be too dynamic to be materialized
(as the cost of updating the materialization may exceed that of run-time
evaluation).

• Run-time evaluation. This strategy enforces a run-time evaluation of each
request (access triple) against the policy expression to determine whether
the triple belongs to the result.

The authors propose a strategy, called pe2lp, for translating algebraic ex-
pressions into an equivalent logic program that is compatible with the different
evaluation strategies above-mentioned. The logic program is then used for ac-
cess control enforcement. Basically, the translation process creates a distinct
predicate symbol for each policy identifier and for each algebraic operator in
the expression. Since operators are not distinguishable, each of them is asso-
ciated with a label, that is, an integer number associated from left to right
and starting form 0. The result of this labeling process is a canonical labeling
of the initial policy expression. Note that the main label of an expression is
the integer associated with the outermost operator of the expression. Transla-
tion pe2lp takes a labeled policy expression and an environment as input and
produces a logic program equivalent to the given expression. The translation
process defines a predicate authP , for each policy identifier P , and a predi-

34 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

E TR(E,e)

P {authP (s, o, a) | (s, o, a) ∈ e(P)} if e(P) is defined,
∅ otherwise.

F +i G {authi(x, y, z) ← mainpF (x, y, z), authi(x, y, z) ← mainpG(x, y, z)}
∪TR(F, e) ∪ TR(G, e) .

F&iG {authi(x, y, z) ← mainpF (x, y, z) ∧mainpG(x, y, z)}
∪ TR(F, e) ∪ TR(G, e) .

F −i G {authi(x, y, z) ← mainpF (x, y, z) ∧ ¬mainpG(x, y, z)}
∪ TR(F, e) ∪ TR(G, e) .

Fˆic {authi(x, y, z) ← mainpF (x, y, z) ∧ c} ∪TR(F, e).

oi(F, G, R) {authi(x, y, z) ← mainpF (x, y, z) ∧ ¬mainpR(x, y, z),
authi(x, y, z) ← mainpG(x, y, z) ∧mainpR(x, y, z)}
∪ TR(F, e) ∪ TR(G, e) ∪ TR(R, e) .

F ∗i R {authi(s, o, a) ← authi(s1, o1, a1) ∧ .. ∧ authi(sn, on, an)|
((s, o, a) ← (s1, o1, a1) ∧ . . . ∧ (sn, on, an)) ∈ R}
∪ {authi(x, y, z) ← mainpF (x, y, z)} ∪ TR(F, e) .

(τiX.F)(G) {authX(x, y, z) ← mainpG(x, y, z)} ∪TR(F, e) ∪ TR(G, e) .

Fig. 14. Translation TR: from policy expressions to logic programs

cate authi, for each operator opi. These predicates have three arguments: a
subject, a resource, and an action. Figure 14 shows the translation of each
operator. The pe2lp translation is semantic preserving, provided that the re-
sulting program is interpreted according to the stable model semantics [22] or
any other semantics equivalent to the stable model semantics on stratified pro-
grams. The logic programming formulation of algebra expressions can be used
to enforce access control. First, for each foreign policy (i.e., policies expressed
in different languages or stored at another site) a wrapper is needed that
should be queried by the logic program [41]. The access control enforcement
is then obtained by applying a materialization strategy, a partial materializa-
tion strategy, or a run-time strategy. In particular, partial materialization is
obtained by applying standard partial evaluation techniques [40] to the logic
program obtained by the translation process. It is important to highlight that
partial evaluation preserves the meaning of the original logic program.

An interesting feature of the proposed algebra is that it can also be used
to specify different elementary policies, such as the open or closed policies,
or propagation rules along a hierarchy. To evaluate the expressiveness of the
algebra, it can be useful a comparison with the First Order Logic (FOL). The

Access Control Policies and Languages in Open Environments 35

PPurchase PProd

PPersonal

&

[non-registered(s)]

PSales

RH

Pd

Organization Policy

Sales Policy

Fig. 15. An example of policy composition

composition algebra captures only a strict subset of the FOL because policy
expressions refer to a well known fixed relation schema, corresponding to the
authorization triple. In this way, the containment decision problem (P1 is
contained in P2) and the checking strong equivalence (P1 and P2 are exactly
equivalent) are decidable for policy expressions. As a result of the comparison
between FOL and the algebra we have that:

• closure-free policy expressions capture exactly the quantifier-free 0-1 frag-
ment6 of monadic first-order logic;

• quantifiers can be captured with the closure operator and one simple rule.

The first-order language is induced by predicates {Pall, P1, P2 . . .}, repre-
senting policy identifiers (Pall denotes the set of all authorization triples), and
{C1, C2 . . .}, representing constraints.

It is important to note that, from the basic domains S, Obj, and A, from
the interpretation of constraint predicates, satisfy, and from an environment e,
the interpretation structures for the monadic first-order logic just introduced
are of the form: (S × Obj × A, e, satisfy), denoting that triple (s, o, a) is or
not an authorization for environment e.

As an example of policy composition, consider the scenario introduced in
Sect. 3.1 and suppose that the computer on-line store is composed of three
departments, named Purchase, Sales, and Production. The manager of each
department is responsible for granting access to data under his responsibility.
Let PPurchase, PSales and PProd be the policies of the three departments.

6 A 0-1 formula F is a formula where each sub-formula of F has at most one free
variable.

36 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

Suppose now that an access is authorized if any of the department policies
state so and that authorizations in policy PSales are propagated to individual
users and documents by classical hierarchy-based derivation rules, denoted
RH . Also, suppose that to access the on-line store, non-registered users need
also the Personal manager consent, stated by policy PPersonal. In terms of
the algebra, the computer store policy can be represented as:

o(PPurchase&PSales ∗RH&PProd, PPersonal, (PPurchase&PSales ∗
RH&PProd)∧(non− registered(s)))

Figure 15 reports the graphical representation of the computer on-line store
policy.

While this algebra is expressive and powerful, it leaves space for further
work. Future work to be carried out includes investigation of administration
policies for regulating the specification of the different component policies
by different authorities; the analysis of incremental approaches to enforce
changes to component policies; the analysis of mobile policies, that is, policies
associated with objects and that follow the objects when they are passed to
another site. Because different and possibly independent authorities can define
different parts of the mobile policy in different time instants, the policy can
be expressed as a policy expression. In such a context, there is the problem
on how to ensure the obedience of policies when the associated objects move
around.

7 Conclusions

An important requirement of any system is to protect its data and resources
against unauthorized disclosure and/or improper modifications, while at the
same time ensuring their availability to legitimate users. A fundamental com-
ponent in enforcing protection is represented by the access control service
whose task is to control every access to a system and its resources and ensure
that all and only authorized accesses can take place. Throughout the chapter
we presented the basic concepts of access control and investigated different is-
sues concerning the development of an access control system, discussing recent
proposals in the area of access control models and languages.

8 Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by
the Italian MIUR within the KIWI and MAPS projects.

Access Control Policies and Languages in Open Environments 37

References

1. Abadi M, Lamport L (1992). Composing specifications. ACM Transactions on
Programming Languages, 14(4):1–60.

2. Ardagna CA, Damiani E, De Capitani di Vimercati S, Samarati P (2004).
XML-based access control languages. Information Security Technical Report.

3. Atkinson B, Della Libera GD, et al. (2002). Web services security (WS-
Security). http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
security.asp.

4. Bell D (1994). Modeling the multipolicy machine. In Proc. of the New Security
Paradigm Workshop, Little Compton, Rhode Island, USA.

5. Bertino E, Bettini C, Ferrari E, Samarati P (1998). An access control model
supporting periodicity constraints and temporal reasoning. ACM Transactions
on Database Systems, 23(3):231–285.

6. Bertino E, Bonatti P, Ferrari E (2001). TRBAC: a temporal role-based ac-
cess control method. ACM Transactions on Information and System Security,
4(3):191–223.

7. Bertino E, Jajodia S, Samarati P (1999). A flexible authorization mechanism
for relational data management systems. ACM Transactions on Information
Systems, 17(2):101–140.

8. Blaze M, Feigenbaum J, Lacy J (1996). Decentralized trust management. In
Proc. of the 1996 IEEE Symposiumon Security and Privacy, Oakland, CA,
USA.

9. Bonatti P, De Capitani di Vimercati S, Samarati P (2002). An algebra for com-
posing access control policies. ACM Transactions on Information and System
Security, 5(1):1–35.

10. Bonatti P, Samarati P (2002). A unified framework for regulating access and
information release on the web. Journal of Computer Security, 10(3):241–272.

11. Box D, et al. (2003). Web services policy assertions language (WS-
PolicyAssertions) version 1.1. http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-policyassertions.asp.

12. Box D, et al. (2003). Web Services Policy Attachment (WS-PolicyAttachment)
version 1.1. http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
policyattachment.asp.

13. Box D, et al. (2003). Web services policy framework (WS-Policy) version 1.1.
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policy.asp.

14. Damiani E, De Capitani di Vimercati S, Paraboschi S, Samarati P (2000).
Securing XML documents. In Proc. of the 2000 International Conference on
Extending Database Technology (EDBT2000), Konstanz, Germany.

15. Damiani E, De Capitani di Vimercati S, Paraboschi S, Samarati P (2002). A
fine-grained access control system for XML documents. ACM Transactions on
Information and System Security, 5(2):169–202.

16. DeTreville J (2002). Binder, a logic-based security language. In Proc. of the
2001 IEEE Symposium on Security and Privacy, Oakland, CA, USA.

17. eXtensible Access Control Markup Language (XACML) Version 2.0 (2004).
eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS.
http://www.oasis-open.org/committees/xacml.

18. Farrell S, Housley R (2002). An internet attribute certificate profile for autho-
rization. RFC 3281.

38 S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati

19. Ferraiolo D, Kuhn R (1992). Role-based access controls. In Proc. of the 15th
NIST-NSA National Computer Security Conference, Baltimore, Maryland.

20. Gabillon A (2004). An authorization model for XML databases. In Proc. of the
ACM Workshop Secure Web Services, George Mason University, Fairfax, VA,
USA.

21. Gabillon A, Bruno E (2001). Regulating access to XML documents. In Proc. of
the Fifteenth Annual IFIP WG 11.3 Working Conference on Database Security,
Niagara on the Lake, Ontario, Canada.

22. Gelfond M, Lifschitz V (1988). The stable model semantics for logic program-
ming. In Proc. of the 5th International Conference and Symposium on Logic
Programming, Cambridge, Massachusetts.

23. Gladman B, Ellison C, Bohm N (1999). Digital signatures, certificates and
electronic commerce. http://jya.com/bg/digsig.pdf.

24. Hosmer H (1992). Metapolicies II. In Proc. of the 15th National Computer
Security Conference, Baltimore, MD.

25. Jaeger T (2001). Access control in configurable systems. Lecture Notes in Com-
puter Science, 1603:289–316.

26. Jajodia S, Samarati P, Sapino ML, Subrahmanian VS (2001). Flexible support
for multiple access control policies. ACM Transactions on Database Systems,
26(2):214–260.

27. Jajodia S, Samarati P, Subrahmanian VS, Bertino E (1997). A unified frame-
work for enforcing multiple access control policies. In Proc. of the 1997 ACM
International SIGMOD Conference on Management of Data, Tucson, AZ.

28. Jim T (2001). Sd3: A trust management system with certified evaluation. In
Proc. of the 2001 IEEE Symposium on Security and Privacy, Oakland, CA,
USA.

29. Kudoh M, Hirayama Y, Hada S, Vollschwitz A (2000). Access control specifica-
tion based on policy evaluation and enforcement model and specification lan-
guage. In Symposium on Cryptograpy and Information Security (SCIS’2000),
Japan.

30. Landwehr CF (1981). Formal models for computer security. ACM Computing
Surveys, 13(3):247–278.

31. Li N, Feigenbaum J, Grosof B (1999). A logic-based knowledge representation
for authorization with delegation. In Proc. of the 12th IEEE Computer Security
Foundations Workshop, Washington, DC, USA.

32. Li N, Grosof B, Feigenbaum J (2003). Delegation logic: A logic-based approach
to distributed authorization. ACM Transactions on Information and System
Security, 6(1):128–171.

33. Li N, Mitchell JC (2003). Datalog with constraints: A foundation for trust-
management languages. In Proc. of the Fifth International Symposium on Prac-
tical Aspects of Declarative Languages (PADL 2003), New Orleans, LA, USA.

34. Li N, Mitchell JC, Winsborough WH (2002). Design of a role-based trust-
management framework. In Proc. of the IEEE Symposium on Security and
Privacy, Oakland, CA, USA.

35. McLean J (1988). The algebra of security. In Proc. of the 1988 IEEE Computer
Society Symposium on Security and Privacy, Oakland, CA, USA.

36. Ryutov T, Zhou L, Neuman C, Leithead T, Seamons KE (2005). Adaptive trust
negotiation and access control. In Proc. of the 10th ACM Symposium on Access
Control Models and Technologies, Stockholm, Sweden.

Access Control Policies and Languages in Open Environments 39

37. Samarati P, De Capitani di Vimercati S (2001). Access control: Policies, models,
and mechanisms. In Focardi R, Gorrieri R, editors, Foundations of Security
Analysis and Design, LNCS 2171. Springer-Verlag.

38. Seamons KE, Winsborough W, Winslett M (1997). Internet credential accep-
tance policies. In Proc. of the Workshop on Logic Programming for Internet
Applications, Leuven, Belgium.

39. Security Assertion Markup Language (SAML) V1.1 (2003). Security
Assertion Markup Language (SAML) V1.1. OASIS. http://www.oasis-
open.org/committees/security/.

40. Sterling L, Shapiro E (1997). The art of Prolog. MIT Press, Cambridge, MA.
41. Subrahmanian V, Adali S, Brink A, Lu J, Rajput A, Rogers T,

Ross R, Ward C. Hermes: heterogeneous reasoning and mediator system.
http://www.cs.umd.edu/projects/hermes.

42. The XACML Profile for Hierarchical Resources (2004). The
XACML Profile for Hierarchical Resources. OASIS. http://www.oasis-
3893open.org/committees/xacml.

43. van der Horst TW, Sundelin T, Seamons KE, Knutson CD (2004). Mobile trust
negotiation: Authentication and authorization in dynamic mobile networks.
In Proc. of the Eighth IFIP Conference on Communications and Multimedia
Security, Lake Windermere, England.

44. Web services security policy (WS-SecurityPolicy) (2002). Web
services security policy (WS-SecurityPolicy). http://www-
106.ibm.com/developerworks/library/ws-secpol/.

45. Wijesekera D, Jajodia S (2003). A propositional policy algebra for access con-
trol. ACM Transactions on Information and System Security, 6(2):286–325.

46. Winsborough W, Seamons KE, Jones V (2000). Automated trust negotiation.
In Proc. of the DARPA Information Survivability Conf. & Exposition, Hilton
Head Island, SC, USA.

47. Winslett M, Ching N, Jones V, Slepchin I (1997). Assuring security and privacy
for digital library transactions on the web: Client and server security policies.
In Proc. of the ADL ’97 — Forum on Research and Tech. Advances in Digital
Libraries, Washington, DC.

48. Woo TYC, Lam SS (1993). Authorizations in distributed systems: A new ap-
proach. Journal of Computer Security, 2(2,3):107–136.

49. World Wide Web Consortium (W3C) (2004). eXtensible Markup Lan-
guage (XML) 1.0 (Third Edition). World Wide Web Consortium (W3C).
http://www.w3.org/TR/REC-xml.

50. Yu T, Ma X, Winslett M (2000). An efficient complete strategy for automated
trust negotiation over the Internet. In Proc. of the 7th ACM Computer and
Communication Security, Athens, Greece.

51. Yu T, Winslett M (2003). A unified scheme for resource protection in automated
trust negotiation. In Proc. of the IEEE Symposium on Security and Privacy,
Berkeley, California.

52. Yu T, Winslett M, Seamons KE (2001). Interoperable strategies in automated
trust negotiation. In Proc. of the 8th ACM Conference on Computer and Com-
munications Security, Philadelphia, Pennsylvania.

53. Yu T, Winslett M, Seamons KE (2003). Supporting structured credentials and
sensitive policies trough interoperable strategies for automated trust. ACM
Transactions on Information and System Security, 6(1):1–42.

Index

access control, 1
mechanism, 1
model, 1
policy, 1

administrative policies, 5
algebra operators, 30
atom, 11
attribute-based access control, 27
authorization, 5

negative, 5
positive, 5

canonical labeling, 33
certification authorities, 24
conflict resolution policies, 6

denials take precedence, 6
no conflict, 6
nothing takes precedence, 6
permissions take precedence, 6

credentials, 24

decision policy, 6
closed, 6
open, 6

declarations, 27
digital certificates, 24

exceptions, 5
eXtensible Access Control Markup

Language (XACML), 18
eXtensible Access Control Markup

Language (XACML), 18
eXtensible Markup Language (XML),

17

First Order Logic (FOL), 34
Flexible Authorization Framework

(FAF), 8

group, 5

hierarchy, 4
object, 4
role, 5
user-group, 4

literal, 11
logic-based language, 7

materialization, 32
partial, 32
run time, 32

negotiation search tree, 26

obligations, 18

PAP, 22
PDP, 21
PEP, 21
PIP, 22
policy algebra, 30
policy composition, 29
policy expression, 31
portfolio, 27
propagation policies, 6

most specific overrides, 6
no overriding, 6
no propagation, 6
path overrides, 6

42 Index

role, 5
rule combining algorithm, 18

undefined response, 25

WS-policy, 18

XML-based languages, 17

Index 43

	copyright: © Springer US, Advances in Information Security (2007)http://www.springerlink.com/content/j866k213338qu447/fulltext.pdf

