
Securing Mission-Centric Operations
in the Cloud?

Massimiliano Albanese, Sushil Jajodia, Ravi Jhawar, and Vincenzo Piuri

Abstract Recent years have seen a growing interest in the use of Cloud
Computing facilities to execute critical missions. However, due to their in-
herent complexity, most Cloud Computing services are vulnerable to multiple
types of cyber-attacks and prone to a number of failures. Current solutions
focus either on the infrastructure itself or on mission analysis, but fail to
consider the complex interdependencies between system components, vulner-
abilities, failures, and mission tasks. In this chapter, we propose a different
approach, and present a solution for deploying missions in the cloud in a way
that minimizes a mission’s exposure to vulnerabilities by taking into account
available information about vulnerabilities and dependencies. We model the
mission deployment problem as a task allocation problem, subject to various
dependability constraints, and propose a solution based on the A∗ algorithm
for searching the solution space. Additionally, in order to provide missions
with further availability and fault tolerance guarantees, we propose a cost-
effective approach to harden the set of computational resources that have
been selected for executing a given mission. Finally, we consider offering fault
tolerance as a service to users in need of deploying missions in the Cloud.
This approach allows missions to obtain required fault tolerance guarantees
from a third party in a transparent manner.

Massimiliano Albanese and Sushil Jajodia
Center for Secure Information Systems, George Mason University, Fairfax, VA, USA

e-mail: {malbanes, jajodia}@gmu.edu

Ravi Jhawar and Vincenzo Piuri

Department of Computer Science, Università degli Studi di Milano, Crema, Italy
e-mail: {ravi.jhawar,vincenzo.piuri}@unimi.it

? The work presented in this paper is supported in part by the Office of Naval Research
under award number N00014-12-1-0461

1

1 Introduction

In recent years, individuals and organizations are increasingly resorting to
Cloud-based services for storage, processing, and management of their data
and applications. This practice offers several advantages to application and
data owners – users, in general – with respect to traditional in-house manage-
ment. First, users are relieved from buying expensive hardware and software
licenses, and recruiting skilled personnel to administer and maintain their
computing resources, thus providing significant economic savings. Second,
users can access their applications using any device providing Internet con-
nectivity. Third, even individuals with little or no IT background can take
advantage of Cloud-based services to develop applications with very high
scalability and elasticity requirements. These benefits are also providing an
incentive for users to leverage Cloud-based solutions to deploy mission-critical
applications.

A Cloud computing infrastructure is typically built by inter-connecting
massive amounts of hardware according to well-defined design patterns, re-
sulting in large-scale data centers that can elastically deliver computing re-
sources to the users through virtualization. The main problem of adopting
such Cloud-based Infrastructure-as-a-Service (IaaS) model is that the data
centers, due to their very high complexity, may be vulnerable to various cyber-
attacks and subject to a large number of failures, which are not within the
control scope of the users, thus increasing users’s security and fault tolerance
concerns [1]. We identify two primary reasons why state-of-art techniques are
unable to suitably address such concerns:

• Most security solutions either design data centers integrating tools such as
intrusion detection systems and firewalls, or develop strategies to imple-
ment applications using techniques such as data obfuscation and memory
management. However, interdependencies between the infrastructure, ap-
plications, and residual vulnerabilities are not taken into account.

• Fault tolerance methods are generally applied at application procurement
and development time. This approach requires users to build their ap-
plications by considering environment specific parameters. However, it is
infeasible to combine failure behavior and system architecture in Cloud
computing due to the limited information about the infrastructure that
providers release to the users.

The goal of this chapter is to provide an overview of approaches that can
address the aforementioned problems. We discuss the inherent challenges,
possible solutions, and relevant open issues. In particular, as an approach to
address the security issues, we describe a solution that considers the current
vulnerability status of the infrastructure and deploys mission-critical appli-
cations (or simply, missions) so as to minimize their exposure to existing
network vulnerabilities. Once a mission is deployed, the proposed solution
then protects the resources (computational hosts and network links) used by

2

the mission to ensure high levels of security during mission execution (Sec-
tion 3 and Section 4). Note that this approach is mission-centric and aims
at providing maximum security for missions, given the current state of the
infrastructure. To address the fault tolerance issues, we discuss a scheme that
can help design fault tolerance solutions based on users’ requirements at run-
time and apply it to missions in a transparent manner. The latter approach
can be integrated within the overall framework for delivering fault tolerance
as a service to users’ applications or missions (Section 5).

2 Background

In this section, we present some preliminary concepts and our assumptions
about the Cloud infrastructure and the missions. We discuss the vulnerability
behavior and failure characteristics of typical Cloud infrastructures, and the
requirements for satisfying a mission’s dependability goals.

2.1 Cloud infrastructure

A Cloud computing infrastructure is typically built by inter-connecting large-
scale, geographically distributed, data centers. Each data center consists of
thousands of hosts that are organized into racks and clusters, and each host
contains multiple processors, storage disks, memory modules and network in-
terfaces. Physical hosts are first connected via high-speed rack switches, which
are in turn connected to aggregation switches (AggS), forming a subsystem
that can be viewed as a cluster. A cluster groups hosts with similar resource
characteristics or administrative parameters. An AggS connects tens of racks
to redundant access routers (AccR) that finally connects different data cen-
ters via the Internet backbone. Typically, data centers also deploy security
services (e.g., firewalls, intrusion detection systems) to protect network ele-
ments from potential threats, and install hypervisors on physical hosts so that
VMs with desired size and software stack can be instantiated and delivered
to the users upon request.

Vulnerability characteristics. Despite careful security engineering, a
number of vulnerabilities remain in the network and allow malicious adver-
saries to launch different types of cyber-attacks. For example, an attacker may
exploit vulnerabilities in services such as ftp, rsh, and sshd to gain desired
access privileges on a given host. Such exploits can be used to compromise
users’ applications or missions deployed in the system. Vulnerabilities and
attack paths in the network can be analyzed using vulnerability scanners,
and approaches based on attack graphs, dependency graphs, and attack sur-
faces (e.g., [2, 3, 4, 5]). Analysis tools can also be extended with probabilistic

3

schemes and ranking methods to quantify the vulnerability level of individual
hosts. For simplicity, in this chapter, we assume that a vulnerability value Vh
is pre-computed for each host h ∈ H in the infrastructure by adopting one of
the existing techniques.

A physical host h ∈ H in the infrastructure can be characterized us-

ing a vector
−→
h = (h[1], h[2], . . . , h[d], h[d + 1]), where the first d dimen-

sions represent the host’s residual capacity for each resource type (e.g.,
CPU, memory). The d + 1th dimension represents the host’s vulnerabil-
ity value Vh. The residual resource capacities and the vulnerability level
of each host are represented using normalized values in [0, 1]. For example,
−→
h = (cpu,mem, Vh) = (1, 1, 1), where cpu = 1 and mem = 1, implies that
both resources are fully available, whereas Vh = 1 means that the host is
extremely vulnerable.

Failure behavior. Due to their high complexity, infrastructure compo-
nents are subject to a large number failures that may prevent the system
from fulfilling its intended functionality. Research on a system’s failure char-
acteristics is necessary because infrastructure failures may have a significant
impact on the applications deployed in the Cloud. Several researchers54 [6, 7]
used data mining techniques to understand the failure behavior of data center
components. Examples of key observations from these studies are as follows:

• The annual failure rate for servers is around 8%. The average number of
repairs is 2 per machine (e.g., 20 repair or replacement events in 9 machines
were identified over a 14 months period).

• Hard disks are the most failure-prone hardware components and the most
significant reason behind server failures (about 78% of total faults or re-
placements affected hard disks).

• Among network devices, top-of-rack switches are most reliable (failure rate
less than 5%) and load balancers are least reliable (failure probability of
1 in 5). Load balancers mainly fail due to software bugs and configuration
errors, and experience short but frequent failures.

The failure behavior of various server and network components can also
be analyzed using analytical models such as fault trees and Markov chains
[8, 9]. Such modeling techniques, as discussed in Section 5, can be used to
analyze the impact of component failures on users’ applications.

2.2 Missions

We consider a mission M to be a composition of a set of tasks M =
{τ1, . . . , τm}. This model-independent definition allows us to consider dif-
ferent software architectures for the mission (e.g., web services, business pro-
cesses, scientific applications) as well as different formalisms (e.g., Petri Nets,

4

work flows). For example, a mission can be a three-tier web application real-
izing an e-Commerce service or a scientific tool with tasks performing graph
theoretical calculations on geographical maps. Intuitively, a mission is suc-
cessful if (i) all the tasks start from a correct initial state, perform their
operations, and generate the correct output in a specified amount of time,
and (ii) the protocol that composes the information from individual tasks
can justifiably be trusted. Each task in the mission can be associated with a
tolerance value tol when it is implemented using some security mechanisms
(e.g., memory management guards to protect from buffer overflow attacks).
Intuitively, the tol value provides an estimate of the maximum level of vulner-
ability that the task can be exposed to without compromising its successful
completion. Each mission task may also be replicated to tolerate failures. In

fact, we create a set of task replicas Rk = {τ1k , . . . , τ
|Rk|
k } for each task, and

the overall mission becomes a composition of the set of replicated task sets
T = {ti} =

⋃
τk∈M Rk. We treat task replicas as independent tasks for the

purpose of mission deployment.
Similarly to physical hosts, we characterize each mission task using a vector−→

t = (t[1], t[2], . . . , t[d], t[d + 1]), where the first d dimensions represent the
task’s requirements for specific computing resources (e.g., CPU, memory) and
the d + 1th dimension is the task’s maximum vulnerability tolerance value
tol. Resource requirements and vulnerability tolerance are also represented
using normalized values in [0, 1], e.g.,

−→
t = (cpu,mem, tol) = (0.5, 0.6, 0.6).

Security of the mission. A number of aspects must be considered to
securely operate a given mission in a Cloud infrastructure. In this chapter,
instead of considering traditional approaches based on network hardening or
applying software security techniques, we study the following aspects:

• Secure mission deployment: Given a mission and the current vulnerability
state of the infrastructure, deploy the mission’s tasks in the network using
the resources (hosts and network links) that are most suitable for success-
fully executing the mission. We formulate this problem as a task allocation
problem that minimizes the mission’s exposure to existing vulnerabilities.
We consider both dynamic and static versions of this problem by mod-
eling missions ignoring or considering temporal aspects respectively (see
Section 3).

• Static and dynamic resource protection: Given a mission and the resources
it uses (after it has been deployed), harden these resources in a way that
is optimal with respect to a given cost function, in order to ensure high
levels of security to the mission during execution. The static version of
the problem protects resources for the entire duration of the execution
whereas the dynamic version protects only the resources still to be used
for execution (see Section 4).

Both these aspects should be addressed for any given mission in order to
ensure that it achieves high levels of security in the Cloud. Note that the
application of the resource protection scheme does not change the solution

5

space of the mission deployment scheme. Therefore, the above two aspects
generate independent, yet complementary, results that together allow the
mission’s execution in the Cloud infrastructure in a way that minimizes its
exposure to vulnerabilities and the impact of exploits.

Fault tolerance of the mission. Implementing a fault tolerant mis-
sion using traditional approaches may be infeasible since the system’s ar-
chitectural details are not widely available to Cloud computing users. As a
consequence, a new approach to address fault tolerance issues of missions is
necessary. In this chapter, we discuss an approach where missions can ob-
tain required fault tolerance properties as a service from a third-party fault
tolerance service provider. In particular, we study the following aspect:

• Fault tolerance management: Given a mission and its fault tolerance re-
quirements, apply a comprehensive fault tolerance solution to the mission
and ascertain users’ requirements at runtime. We present a scheme that re-
alizes general fault tolerance mechanisms as independent modules that can
transparently function on the missions, and based on user’s requirements,
appropriate modules are selected and composed in a specified manner to
form a comprehensive solution (see Section 5).

3 Secure Mission Deployment

The first step to securely execute a given mission is to deploy the mission
tasks in the Cloud such that their exposure to vulnerabilities is minimized.
Since requests for mission deployment may arrive at any time, we develop
a deployment strategy that considers the current resource allocation and
vulnerability status of the Cloud. When a request is received, the allocation
for the new mission is computed based on the availability of currently unused
resources. Once the mission is deployed, resource allocation and vulnerability
status are updated accordingly. In this section, we present a detailed problem
formulation, and an approach to solve the mission deployment problem. We
also discuss the challenges that still need to be addressed.

Problem formulation. To focus on the deployment problem, we as-
sume that a virtual machine containing required resources and services is
instantiated for each task in the mission. This assumption reduces mission
deployment to a task allocation problem that can be characterized as a func-
tion a : T → H which maps each mission task ti ∈ T to a physical host
hj ∈ H in the infrastructure. The binary variable aij denotes the truth value
of a(ti) = hj , that is,

(∀ti ∈ T, hj ∈ H) aij =

{
1 if a(ti) = hj
0 otherwise

6

Every time a task ti is allocated on host hj , the vulnerability score of
host hj may increase by ∆Vti,hj

since new vulnerabilities are potentially in-
troduced on the host. Note that, although multiple hosts may have similar
configurations and, consequently, similar vulnerability scores, their vulner-
ability scores may vary significantly at run time, as tasks are dynamically
allocated and deallocated. Let V ∗hj

denote the vulnerability score of host hj
after mission deployment. Our objective is to find, among all possible allo-
cations a ∈ A, the allocation that minimizes the largest V ∗hj

amongst all the
hosts involved in the mission, that is

min
a∈A

max
hj∈H|∃ti∈T,a(ti)=hj

V ∗hj
(1)

Note that, ideally, the mission’s exposure to vulnerabilities in the system
after allocation should be zero. In practice, the effectiveness of task alloca-
tion must be measured in terms of the deviation from the ideal behavior.
Furthermore, note that this formulation focuses on optimizing the security
and workload of the mission. The fault tolerance aspects of the mission are
integrated in the optimization problem in the form of constraints on the
placement of each mission task in the Cloud infrastructure (e.g., the distri-
bution constraint described below). We provide a detailed discussion on fault
tolerance constraints, and a method to derive them, in Section 5.

Each allocation a ∈ A should satisfy the following constraints to ensure
the dependability of the mission.

• Consistent allocation: This constraint specifies two conditions that must
be satisfied across all the hosts in the infrastructure at all times.

(∀ti ∈ T)
∑
hj∈H

aij = 1 (2)

(∀hj ∈ H)(∀x ∈ [1, d])
∑
ti∈T

aij · t[x] ≤ h[x] (3)

Equation 2 specifies that each mission task must be allocated only on
a single physical host. Equation 3 implies that the amount of resources
consumed by all the tasks mapped on a single host cannot exceed the
total capacity of that host in any dimension.

• Distribution: Equation 4 specifies that the allocation function a : T → H
must map all the replicas of a task on different hosts to avoid single points
of failure.

(∀τk ∈M)(∀τ ′k, τ ′′k ∈ Rk) a(τ ′k) 6= a(τ ′′k) (4)

• Vulnerability tolerance: To protect the tasks from being compromised due
to the vulnerabilities on the hosts on which they are allocated, this con-
straint specifies that a task can be mapped only to the hosts whose vul-

7

nerability value V is less than the vulnerability tolerance tol of that task,
that is,

(∀hj ∈ H)(∀ti ∈ T) ti[d+ 1] ≥ aij · hj [d+ 1] (5)

An attacker can exploit the vulnerabilities on a given host hj and compro-
mise the mission if a task ti ∈ T is placed on host hj having vulnerability
value higher than the tolerance level of the task.

Mission deployment solution. Modeling secure mission deployment as
an optimization problem has not been well-studied in the literature. Given
the NP-hardness of the general allocation problem, existing solutions typi-
cally adopt heuristics, meta-heuristics, and mathematical programming based
approaches. In general, such approaches either have scalability issues or relax
the optimality goals. In our context, we need an approach that solves the
mission deployment problem in a time-efficient manner and provides accept-
able sub-optimal results. One possible solution is based on the A∗ state-space
search method discussed in [10]. Here, we provide a detailed description of
this approach.

To enable A∗ exploration, the overall state-space is represented as a tree.
We start by describing the data structure supporting the exploration of the
solution using the A∗ algorithm:

• A state s is a possible choice for allocating task ti on host hj . A state is
represented by the pair (ti, hj).

• The root state represents is the initial state from which the algorithm
starts, with no task being allocated yet.

• An operation of the A∗ algorithm generates the set of feasible child states
for a given state s.

• The solution path is the path from the root state to the first leaf state that
is reached during state-space exploration.

• The goal state is a state in which all the tasks have been allocated. A leaf
state corresponds to a complete allocation.

To generate the search tree from the root state, the set T of tasks is ini-
tially sorted in increasing order of vulnerability tolerance tol and considered
for allocation in this order. The ith task in the sorted list corresponds to the
ith level in the state-space tree. Given a state s = (ti, hj), the next task t′

from the sorted list is chosen, and all the hosts hj ∈ H that satisfy the de-
pendability constraints (consistent allocation, distribution, and vulnerability
tolerance constraints) with respect to t′ are shortlisted. The successors of
state s are all the states mapping t′ to one of the shortlisted hosts.

The evaluation function for state s in the state-space tree is as follows:

fvul(s) = gvul(s) + hvul(s) (6)

where gvul(s) is the aggregate vulnerability score associated with the allo-
cation path from the root state to the current state s, and hvul(s) estimates

8

Algorithm 1 Estimate cost
1: Repeat steps 2 through 4 until a goal state is reached.

2: Use the A∗ operation to obtain the set S of feasible successors of the current state.
3: Calculate (Vhj

+∆Vti,hj
) for each state in S.

4: Select the state with minimum (Vhj
+∆Vti,hj

) value and temporarily mark it as the

current state s. {Note that we choose the state with minimum value to keep the value
of hvul(s) as the lower bound.}

Algorithm 2 State-space tree traversal scheme
1: Push the root state in OPEN and execute steps 2–5 until either a complete allocation is

obtained or OPEN becomes empty.
2: Pop the state s with minimum fvul(s) from OPEN.

3: If state s corresponds to the goal state, construct the final solution by traversing the tree

in the reverse order from the goal state to the root state; else, generate the successors
of s using the A∗ operation.

4: For each successor s∗ of s

i) Calculate new gvul, the aggregate vulnerability from the root state to state s∗.

ii) If the entry corresponding s∗ already exists in either OPEN or CLOSE and its real cost
is less than that of the current successor, drop the current successor since the same

state has already been reached with lower cost. Otherwise, continue with the next

step.
iii) Estimate the lower bound hvul(s

∗) and compute fvul(s
∗) = gvul(s

∗) + hvul(s
∗).

iv) Push the successor s∗ and its fvul(s
∗) value in OPEN since state s∗ has been suc-

cessfully generated and its cost computed.

5: Push the parent state s in CLOSE since it has been visited.

the minimum additional vulnerability associated with completing the alloca-
tion from state s to a goal state. The value of gvul(s) is computed as follows:

gvul(s) = gvul(parent(s)) + Vhj +∆Vti,hj (7)

where gvul(parent(s)) denotes the aggregate vulnerability score associated
with the allocation path leading to the parent state of s and (Vhj +∆Vti,hj)
denotes the updated vulnerability score of host hj after allocation of task ti.
The gvul(s) value for the root state is initialized to 0.

If we consider a uniform cost search, the lower bound estimate for each
state must be considered zero, that is, hvul(s) = 0. The A∗ algorithm, in this
case, obtains an optimal solution but expands a higher number of states (as
shown in Example 1). Therefore, a heuristic is necessary to estimate hvul.
Algorithm 1 outlines an approach to realize the estimateCost function. In
this case, hvul is computed as the total vulnerability value along the traversed
path. This algorithm significantly improves the performance of the traversal
scheme when compared to a uniform cost search without influencing the final
result.

The state-space tree traversal scheme provides the solution path that mini-
mizes the mission’s exposure to the vulnerabilities in the system. The traver-

9

sal scheme dynamically generates the state-space tree based on the states
that are expanded and visited. The tree expansion starts from the root state
and stops at the goal state, where it obtains a near-optimal allocation. Two
data structures OPEN and CLOSE are used for making the traversal decisions.
OPEN contains the set of states that are generated using the A∗ operation but
not yet visited, and CLOSE contains the states that are already visited. Each
entry in OPEN and CLOSE contains a state s and its corresponding fvul(s)
value. Algorithm 2 outlines the traversal scheme using (i) the A∗ operation
which, given a state s, generates the set of feasible child states or successors,
and (ii) the estimateCost heuristic that calculates the lower bound vulnera-
bility value hvul of each successor.

Table 1 Example scenario for mission deployment

Infrastructure Mission

Host
Residual CPU capacity,

Task
CPU Requirement,

Vulnerability level Vulnerability tolerance

hj ∈ H
−→
h (cpu, V) ti ∈ T

−→
t (cpu, tol)

h1 0.5, 0.2 t1 0.4, 0.2
h2 0.3, 0.2 t2 0.4, 0.2
h3 0.7, 0.1 t3 0.3, 0.4
h4 0.5, 0.3

Table 2 Increase in vulnerability scores

∆Vti,hj
h1 h2 h3 h4

t1 0.2 0.1 0.1 0.3
t2 0 0.1 0.2 0.1

t3 0.1 0.1 0.2 0

Example 1. Consider an infrastructure with four hosts H = {h1, . . . , h4} and
a mission with two tasks M = {τ1, τ2}, where R1 = {τ11 , τ21 } and R2 = {τ12 }.
Mission deployment is driven by a : {t1, t2, t3} → {h1, h2, h3, h4}, and dis-
tribute constraint holds for tasks t1 and t2. For simplicity, consider only a
single resource dimension for hosts and tasks (say CPU). Table 1 outlines
available CPU capacity and vulnerability level of each host, and CPU re-
quirements and vulnerability tolerance threshold of each task. Table 2 pro-
vides details on the increase in the vulnerability scores.

Figure 1(a) illustrates the state-space tree generated by our algorithm
during mission deployment. The algorithm starts from the root state by gen-
erating the states for the first level in the tree. The operation considers task
t1, discards hosts h2 and h4 since they violate the capacity and vulnerability
threshold constraints respectively, and generates states (t1, h3) and (t1, h1).

10

The fvul(s) values for the two states are calculated as 0.7 and 1.0 respectively
and pushed into OPEN.

root

(t1, h3), 0.7

(t2, h1), 0.7

(t3, h2), 0.7 (t3, h3), 0.7 (t3, h4), 0.7

(t1, h1), 1

root

(t1, h3), 0.7

(t2, h1), 0.7

(t3, h2), 0.7 (t3, h3), 0.7 (t3, h4), 0.7

(t1, h1), 0.4

(t2, h3), 0.7

(t3, h4), 1.0 (t3, h2), 1.0

(a) using the estimateCost heuristic (b) assuming hvul(s)=0

Fig. 1 State-space tree expanded using the A∗ traversal scheme

Since state (t1, h3) has the smallest fvul(s) value, it is extracted from
OPEN and marked as the current state. Its successors are then generated and
fvul values calculated. In this case only state s = (t2, h1) with fvul(s) = 0.7 is
returned and pushed into OPEN. In particular, after calculating gvul(s) = 0.4,
the estimateCost function is used to estimate the vulnerability value hvul(s)
along this path. In this case, feasible states corresponding to task t3 are
considered, and the state with minimum gvul(s) value (0.3) is returned since
states corresponding to task t3 are leaf nodes.

At this point, state (t2, h1) is the entry with the lowest fvul(s) value in
OPEN. This state is marked as the current state and its successors (t3, h4),
(t3, h3) and (t3, h2) are generated. The fvul(s) value of all these states are
calculated and pushed in OPEN. The state (t2, h1) is now pushed in CLOSE.
The states corresponding to the task t3 are similarly expanded and visited.
The state-space search has now reached the goal state and found the complete
task allocation. The algorithm pushes (t3, h4) in CLOSE, and returns a(t1)=h3,
a(t2)=h1 and a(t3)=h4 as the complete allocation solution.

When uniform cost is assumed (i.e., (∀s)hvul(s) = 0) and this heuristic
is not used, 9 states are expanded to perform task allocation, as shown in
Figure 1(b), while our algorithm expands only 6 states.

Open issues. Based on the above formulation of the mission deployment
problem, we identify that three main challenges still need to be addressed.

• VM images selection: For each task, we need to instantiate a virtual ma-
chine containing all the resources and the services required to successfully
execute that task. Hence, during mission deployment, we must first map
each task to an available VM image and then to a physical host.
Existing Cloud computing services usually require users to manually se-
lect VM images from a repository. Typically, users can also upload and
share their VM images with other customers. This feature exacerbates the
security problems in public Cloud services, and such problems cannot be

11

identified by the users in a straightforward manner during image selec-
tion. For example, Balduzzi et al. [11] studied the vulnerability issues in
Amazon EC2 service2 by analyzing over 5,000 public images; using the
Nessus vulnerability scanner, they identified that 98% of Windows AMIs
(Amazon Machine Images) and 58% of Linux AMIs had software with crit-
ical vulnerabilities. This implies that an automated security-driven search
scheme is required to deploy mission tasks. In other words, a task alloca-
tion function aimage : T → I which maps each task t ∈ T to a VM image
I ∈ I based on security requirements needs to be defined.

• Dynamic mission deployment: Instead of allocating resources to tasks for
the entire duration of a mission, we must consider the execution time of
each task and perform allocation only for necessary periods of time while
minimizing its exposure to the vulnerabilities.
The mission model must be extended to include the start time and a
deadline for each task. This extension allows us to generate the target
execution timeline of the mission and obtain an enhanced mission model.
This mission model is a special kind of labeled graph M = (S, T, ρ), where
S is a set of nodes representing the state of the computation, T is a set of
edges representing tasks, and ρ : T → 2R is a function mapping each task
to the pool of resource types required to complete the task. Additionally,
edges are labeled with task durations. Similar to the mission deployment
approach discussed in this section, scalable solutions that can efficiently
schedule mission tasks are required to address this challenge.

• Incremental vulnerability analysis: Each allocation introduces a set of new
services on a host and increases its vulnerability level. We need a func-
tion v : H × T → R that can estimate the increase in the vulnerability
level ∆Vti,hj

to facilitate the “what-if” analysis. One possible approach
to vulnerability assessment is by means of attack graphs, and a naive
method to estimate ∆Vti,hj is to discard the original attack graph and
perform re-computation from scratch using the new data. However, such
re-computation is wasteful since typically the changes are small, resulting
in information that is not very different from the original one. Therefore,
we need to take an incremental approach that (i) identifies the portions of
the attack graph that have changed due to an event, (ii) re-computes the
vulnerability information only in the changed portion, and (iii) combines
the new and original information to provide updated results.

4 Mission Protection

The second step to securely execute a mission is to protect the hosts and
network links used by the mission from possible cyber-attacks. In this section,

2 http://aws.amazon.com/ec2/

12

we formulate the hardening problem and the cost model, and discuss the
approach presented in [2] to solve the problem using attack graphs.

Fig. 2 Example of an attack graph including possible hardening actions, initial conditions,

intermediate conditions, and exploits

Problem formulation. A network hardening strategy is a set of atomic
actions that can be taken to guard various resources in the network. For
instance, an action may consist in stopping the ftp service on a given host.
We start by introducing the notion of attack graphs that represent prior
knowledge about vulnerabilities, their dependencies, and network connectiv-
ity. Given a set E of exploits, a set of security conditions C (e.g., existence
of a vulnerability on a host or connectivity between two hosts), a require
relation Rr ⊆ C × E, and an imply relation Rr ⊆ E × C, an attack graph is
a directed graph G = (E ∪ C,Rr ∪ Ri), where E ∪ C is the vertex set and
Rr ∪Ri is the edge set [2]. The term Initial conditions refers to the subset of
conditions Ci = {c ∈ C | @e ∈ E s.t. (e, c) ∈ Ri}, whereas other conditions,
which are usually consequences of exploits, are referred to as intermediate
conditions.

Example 2. In Example 1, mission tasks are allocated on hosts h3, h1 and
h4. Assume that our objective is to prevent the attacker from gaining root

13

privileges on host h4, i.e., we want to avoid reaching condition root(h4) so as
to protect task t3.

Figure 2 illustrates an example attack graph in which exploits are rep-
resented using rectangles and conditions using ovals. The dashed ovals are
the initial conditions and other ovals represent intermediate conditions. The
attack graph is simplified in several ways. For example, a single condition
ftp(hs, hd) is used to denote transport-layer ftp connectivity between two
hosts hs and hd, physical-layer connectivity, and existence of the ftp dae-
mon on host hd. The attack graph depicts a simple scenario, with hosts h3,
h1 and h4, and four types of vulnerabilities: ftp rhosts, rsh, sshd bof , and
local bof . An example of attack path is the one where the attacker starts
by establishing a trust relationship with host h4 (condition trust(h4, h3)) by
exploiting an ftp vulnerability on host h4 (ftp rhosts(h3, h4)). The attacker
can then gain user privileges on host h4 (condition user(h4)) with an rsh
login, and achieve the goal condition root(h4) using a local buffer overflow
attack.

An allowable hardening action is any subset of initial conditions such that
all the conditions can be jointly disabled in a single step, and no other initial
condition is disabled as a consequence. The rounded rectangles in the attack
graph in Figure 2 are examples of allowable hardening actions:

• stop ftp(h4) = {ftp(h1, h4), ftp(h3, h4)}
• block host(h3) = {ftp(h3, h1), sshd(h3, h1), ftp(h3, h4)}
• stop sshd(h1) = {sshd(h3, h1)}

Given an attack graph, a set A of allowable actions and a set of target
conditions Ct = {c1, . . . , cn}, a hardening strategy S is a set of hardening
actions such that conditions in Ct cannot be reached after all the actions in
S are applied.

Note that removing specific initial conditions may require to take actions
that disable additional conditions (e.g., conditions that are not part of any
attack path). Therefore, in order to obtain a cost-effective hardening strategy,
we need to define a cost model that takes the impact of hardening actions
into account. A hardening cost function is any function cost : S → R+ that
satisfies the following conditions:

cost(∅) = 0 (8)

(∀S1, S2 ∈ S)(C(S1) ⊆ C(S2) =⇒ cost(S1) ≤ cost(S2)) (9)

(∀S1, S2 ∈ S)(cost(S1 ∪ S2) ≤ cost(S1) + cost(S2)) (10)

where S denotes the set of all possible strategies and C(S) denotes the
set of all conditions disabled under strategy S. Note that many different cost
functions can be defined. For example, a basic cost function could simply
count the number of initial conditions that are removed under a harden-
ing strategy. Two possible hardening strategies for the attack graph Fig-

14

ure 2 are S1 = {stop ftp(h4)} and S2 = {block host(h3)}. If we assume that
cost({stop ftp(h4)}) = 20 and cost({block host(h3)}) = 10, then the optimal
strategy with respect to root(h4) is S2 = {block host(h3)}.

Mission protection solution. Most hardening techniques starts from
the target conditions and move backwards through the attack graph to make
logical inferences. Such backward search schemes typically face combinato-
rial explosion issues. Therefore, we must define a scalable scheme to build
hardening strategies.

Starting from initial conditions, the hardening scheme in [2] traverses the
attack graph forward. A key advantage of traversing the attack graph forward
is that in a single pass, the algorithm can compute hardening strategies with
respect to any condition. More importantly, forward traversal enables us to
prune the search space, as briefly discussed below. The hardening algorithm
first performs a topological sort of the nodes in the attack graph, and pushes
them into a queue, with initial conditions at the front of the queue. Each
node q in the queue is then analyzed and a set σ(q) of possible hardening
strategies w.r.t. to q is determined. Based on the nature of q (exploit or
security condition), different steps are taken to compute σ(q), as described
in the following.

• If q is an initial condition, it is associated with a set of strategies σ(q) such
that each strategy contains one and only one of the allowable actions that
disable q.

• If q is an exploit, it is associated with a set of strategies σ(q) that is the
union of the sets of strategies for each condition c required by q. In fact, an
exploit can be prevented by disabling at least one of its required conditions.

• If q is an intermediate condition, it is associated with a set of strategies σ(q)
such that each strategy is the union of a strategy for each of the exploits
that imply q. In fact, in order to prevent the attacker from reaching an
intermediate condition, all the exploits that imply it must be prevented

In order to prevent the combinatorial explosion of the search space, the
algorithm only maintains the k best solution w.r.t. cost for each intermediate
node. Setting k = 1 will result in very fast execution, but will provide more
expensive solutions. Higher values of k will increase execution times but will
result in solutions that are closer to the optimal one. This scheme, under
reasonable assumptions, provides an approximation ratio that, for k = 1, is
bounded by nd/2, where n is the maximum in-degree of nodes in the graph
and d is the depth of the graph. Additionally, experiments reported in [2] show
that, in practice, the approximation ratio is much lower than its theoretical
upper bound.

Example 3. Consider again the attack graph of Figure 2, and assume that the
cost of actions stop ftp(h4), block host(h3), and stop sshd(h1) is 20, 10, and
15 respectively. After executing the topological sort and examining initial
conditions, using k = 1, we obtain the following intermediate results:

15

• σ(ftp(h1, h4)) = {{stop ftp(h4)}}
• σ(ftp(h3, h1)) = {{block host(h3)}}
• σ(sshd(h3, h1)) = {{block host(h3)}}
• σ(ftp(h3, h4)) = {{block host(h3)}}

When the algorithm examines the exploit rsh(h1, h4), before pruning we
obtain σ(rsh(h1, h4)) = {{stop ftp(h4)}, {block host(h3)}}. After pruning,
we obtain σ(rsh(h1, h4)) = {{block host(h3)}}. Similarly, it is easy to show
that the algorithm finally returns σ(root(h4)) = {{block host(h3)}} as the
recommended hardening strategy, which in this case coincides with the opti-
mal solution.

Open issues. The dynamic version of the problem where we must take
into account information about ongoing attacks remains an open issue. This
will require the additional capability of detecting and tracking cyber attacks
in real time as well as assessing and mitigating their potential impact on
deployed missions. That is, given a mission, the set of hosts and links used
to deploy the mission, and a stream of security alerts, we must find a cost-
optimal time-varying strategy to harden, at any point in time, only the subset
of resourced not used yet. A solution to this problem will help minimize the
disruption that network hardening may cause to legitimate users.

5 Fault Tolerance Management

Fault tolerance is a critical and highly desirable property for mission deployed
in the Cloud, given that large Cloud installations may be subject to a large
number of failures. In this section, we adopt the perspective discussed in [12],
where mission tasks can acquire desired fault tolerance properties as a service
from a third-party (the fault tolerance service provider). The service provider
must perform the following activities in order to realize this perspective.

• Defining an approach to implement general fault tolerance mechanisms as
independent modules such that each module can transparently function
on mission tasks.

• Analyzing the fault tolerance properties of each module by taking into
account the failure behavior and system architecture. This sub-problem
allows the service provider to select appropriate low-level modules based
on the users’ high-level goals.

• Defining a scheme to deliver a holistic fault tolerance solution to mission
tasks by combining the set of selected modules.

Realizing fault tolerance modules. To offer fault tolerance as a ser-
vice, the service provider must define general fault tolerance mechanisms in
a way that they can transparently function on mission tasks deployed on vir-
tual machines. This requirement can be satisfied by applying fault tolerance

16

mechanisms at the virtualization layer [13]. We use ft unit to denote the
fundamental module that applies a coherent fault tolerance mechanism at
the granularity of a VM instance. For instance, an ft unit may replicate the
entire VM instance on multiple physical hosts or an ft unit may detect server
crashes using well-known failure detection algorithms (e.g., by running the
heartbeat protocol in the VM independently of mission tasks). In this man-
ner, replication and failure detection can be performed without making any
changes to the mission’s source code, and the impact of hardware failures on
the mission can be handled transparently.

Since different fault tolerance units realize different mechanisms, they of-
fer a unique set of fault tolerance properties. Such properties can be char-
acterized using their functional, operational, and structural attributes. The
fault tolerance property p of an ft unit can be denoted as p = (u, p̂, A)
where u represents the ft unit, p̂ is the abstract property (e.g., availabil-
ity, reliability), and A is a set of attributes that refers to the granularity at
which u can handle failures, benefits and limitations of using u, and quality
of service parameters. An order relationship can be defined on the domain
of each attribute a ∈ A. Therefore, by looking at the attributes set A as-
sociated with an ft unit, the service provider can evaluate fault tolerance
properties that can be achieved with its use. An example of fault tolerance
property for an ft unit u∗ is p = (u∗, availability = 98%, {mechanism =
active replication, no of replicas = 4, fault model = node crashes}).

Analyzing the effectiveness of a fault tolerance module. The ef-
fectiveness of an ft unit can be evaluated in terms of the level of reliability
and availability that can be obtained with its use. This analysis requires
the service provider to (i) evaluate different configurations of modules, and
(ii) quantify the reliability and availability obtained with each ft unit by tak-
ing into account the failure characteristics of the system. We briefly discuss
each of these two aspects in the following.

Evaluating the configuration of fault tolerance modules. A fault
tolerance module ft unit may have different configurations. For example, the
ft unit realizing replication schemes may have three configurations, namely,
semi-active, semi-passive, and passive. These configurations represent the ma-
jority of fault tolerance implementations that are currently being used, and
each configuration provides a different set of properties. One approach to
characterize the effectiveness of an ft unit, in a specific configuration, is to
use Markov chains. As an example, we discuss Markov modeling for semi-
active replication. Other models can be generated in a similar manner [8].

In semi-active replication, the input is either provided to all the repli-
cas or state information of the primary replica is frequently sent to backup
replicas. All the replicas (primary as well as backup replicas) execute all the
instructions. However, only the output generated by the primary replica is
made available to the user, and output messages from the backup replicas
are logged. When the primary replica fails, one of the backup replicas can
resume execution from a correct state.

17

Fig. 3 Example of a Markov model for semi-active replication

Figure 3 illustrates the Markov model of an ft unit that realizes a semi-
active replication scheme with two replicas. Each state is represented as (x, y)
where x = 1 implies that the primary replica is working and x = 0 implies
that it failed. Similarly, y represents the state of the backup replica. Normal
execution starts in state (1, 1) and remains in this state as long as both repli-
cas are available. When either the primary replica or the backup replica fails,
the system moves to state (0, 1) or (1, 0) accordingly, and the other replica
continues the execution. From the mission’s perspective, states (0, 1) and
(1, 0) are equivalent, thus, they are represented using a single state. In state
(0, 1) or (1, 0), the recovery mechanism is initiated, and the system moves to
state (1, 1) if the recovery is successful. Otherwise, if the current replica fails,
the system transitions to state (0, 0) and the service becomes unavailable. In
the figure, λ denotes the failure rate and µ denotes the recovery rate.

Deployment contexts for a fault tolerance module. If all the replicas
generated through an ft unit are deployed on the same physical host, the
host failure may result in the failure of the mission. This implies that the
location of each replica is also critical to the fault tolerance of the mission.
We analyze how the fault tolerance property of a given ft unit changes across
three different deployment contexts.

• Different physical hosts within a cluster. Replicas of a mission task are
assigned to different hosts that are connected in a LAN. This deployment
provides benefits in terms of low latency and high bandwidth but offers
very fault tolerance. For example, a single switch failure may prevent the
replicas from communicating with one other, and as a consequence, the
consistency protocol cannot be executed.

• Different clusters within a data center. Replicas of a mission task are as-
signed to hosts that belong to different clusters within the same data
center. This deployment provides moderate benefits in terms of latency
and bandwidth, and offers higher fault tolerance.

• Multiple data centers. Replicas of a mission task are assigned to hosts that
belong to different data centers. This deployment reduces the performance
of the mission with respect to network latency, but offers a very high level
of fault tolerance.

18

As the values of most low-level parameters (e.g., MTBF, MTTR) of hard-
ware and system software are normally vendor-confidential, the work pre-
sented in [8] uses the data published in [14, 15] to determine the overall
availability provided by various ft unit’s for different configurations and de-
ployment schemes. In particular, the results from Markov model analysis are
combined with the notion of deployment levels using hierarchical fault trees
for server failures. We observe from the results that the availability of missions
is higher when replicas are placed in two different data centers. The value is
slightly lower for the deployment level where replicas are placed in different
clusters within a data center and still lower when replicas are placed inside
the same cluster. The overall availability obtained by semi-active replication
is slightly higher than semi-passive replication, whereas passive replication
appears to be the worst.

This analysis allows a service provider to identify the placement conditions
inherent to each ft unit. Such conditions can be specified in the form of
fault tolerance constraints, that are then taken into account while deploying
mission tasks in the infrastructure (e.g., using the technique in Section 3).
Examples of fault tolerance constraints are as follows [16].

• Restriction. The service provider may require that task replicas be located
within a subset of hosts in the infrastructure (e.g., a cluster or data center).
Such requirement naturally arises when a deployment context is chosen
(e.g., place two replicas of a task in different clusters within a data center).
To satisfy such requirements, the service provider can use a restriction
constraint that limits a task ti ∈ T to being allocated only on a specified
group of physical hosts H ⊂ H. When the set Restrict = {(ti, Hj) | ti ∈
T ∧ Hj ⊂ H} is defined, the allocation function a : T → H must ensure
the following:(

∀ti ∈ T,Hj ∈ 2H
)

((ti, Hj) ∈ Restrict =⇒ a(ti) ∈ Hj) (11)

• Forbid. The service provider may need to specify that the allocation func-
tion must not deploy a given task on a subset of hosts. For example, if
tasks t1 and t2 must be allocated on two different clusters C1 and C2, it is
sufficient to restrict one task to one of the two clusters and forbid the other
task from being deployed in the same cluster. Therefore, when the service
provider defines a set Forbid = {(ti, Hj) | ti ∈ T ∧ Hj ⊂ H} specifying
that task ti must be forbidden from being allocated on hosts in Hj , the
allocation function must satisfy the following:(

∀ti ∈ T,Hj ∈ 2H
)

(ti, Hj) ∈ Forbid =⇒ a(ti) /∈ Hj) (12)

• Network latency threshold. To balance the performance of the mission, the
service provider may want to allocate task replicas ti, tj ∈ T such that the
network latency between them is below a given threshold δ. In this case,
the service provider can define a set Latency = {(ti, tj , δ) | ti, tj ∈ T)∧δ ∈
R+}, and the allocation function a : T → H must satisfy the following:

19

(∀ti, tj ∈ T) ((ti, tj , δ) ∈ Latency =⇒ latency(a(ti), a(tj)) ≤ δ) (13)

We assume that the service provider realizes a range of fault tolerance
mechanisms as ft unit’s and estimates the overall reliability and availability
that can be achieved using each ft unit with different configurations and
deployment schemes. Let U be the set of possible ft unit’s applicable to the
system. For a given user request, first, the set U ′ ⊆ U of ft unit’s that satisfy
the abstract property requirements is derived. Any u ∈ U ′ can be used to
deliver the desired fault tolerance properties if there are no additional con-
straints on cost or performance. However, since users may specify constraints
on attributes in A, a second set U ′′ ⊆ U ′ of modules is defined by only includ-
ing those modules in U ′ that satisfy the additional constraints. For instance,
a user may specify that the value of a given attribute a ∈ A must be above
a given threshold. Finally, modules in U ′′ are ordered with respect to users’
requirements. The first ft unit in the ordered set U ′′ can be selected as the
most appropriate fault tolerance module.

Delivering comprehensive fault tolerance solutions. Although an
ft unit can serve as the fundamental fault tolerance module, a comprehen-
sive solution ft sol can be obtained by combining a set of ft unit’s in a
specific execution logic. For example, a heartbeat test (ft unit1) can be ap-
plied only after a mission task is replicated on multiple hosts (ft unit2),
and a recovery mechanism (ft unit3) can be applied only after a failure is
detected. Therefore, using the above matching process, the service provider
first designs a comprehensive fault tolerance solution ft sol and applies it to
the mission tasks. Note that by using ft unit’s to deliver a comprehensive
solution, the extent of the fault tolerance support can be changed dynami-
cally. In other words, the fault tolerance properties applied on a mission task
can be dynamically changed based on the business needs. For instance, a
robust failure detection mechanism can be replaced with a less robust one.
Furthermore, by designing an ft unit to be configurable at runtime, resource
consumption and costs can be controlled.

The service provider starts monitoring the service once an ft sol is ap-
plied to a mission. Runtime monitoring is critical for efficient service deliv-
ery since the context and attribute values of a fault tolerance solution may
change at runtime due to the dynamic nature of the Cloud computing en-
vironment. To achieve this, the service provider first defines a set of rules
over attributes a ∈ A such that the validity of every rule establishes that
property p is supported by the fault tolerance solution. For instance, given an
ft sol s1 that satisfies property p1 = (s1, availability = 98%, {mechanism =
active replication, failure detection = heartbeat test,max recovery time =
25ms, level = 3}), the set of rules that can test the validity of p1 can be
defined as:

• r1 : no of server instances ≥ 3

20

• r2 : heartbeat test frequency = 5ms
• r3 : recovery time ≤ 25ms

In this context, the task of the service provider is to monitor the attribute
values of each ft sol at runtime, and verify the corresponding set of rules to
ensure that missions requirements are satisfied.

6 Conclusions

In this chapter, we highlighted that existing solutions do not suitably address
users’ security and fault tolerance concerns in the Cloud computing scenario.
We then showed how our work can address some of these limitations, although
some issues still remain open.

Specifically, we formulated the mission deployment problem as a security-
oriented task allocation problem, and proposed a solution aimed at min-
imizing a mission’s exposure to vulnerabilities. In order to define a more
comprehensive solution, and provide better availability and fault tolerance
guarantees to missions, we discussed an efficient approach to effective net-
work hardening. Finally, we discussed how to offer fault tolerance as a service
to missions.

In addition to the open issues already discussed throughout the chapter,
another important issue that needs to be addressed is the ability to automat-
ically respond to incidents at runtime in order to salvage missions that may
have already been compromised by those incidents.

References

1. P. Samarati and S. De Capitani di Vimercati, “Data protection in outsourcing sce-
narios: Issues and directions,” in Proceedings of the 5th ACM Symposium on Infor-

mation, Computer and Communications Security (ASIACCS 2010), Beijing, China,

April 2010, pp. 1–14.
2. M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and cost-effective network hard-

ening using attack graphs,” in Proceedings of the 42nd Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN 2012), Boston, MA,
USA, June 2012.

3. V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing, “Ranking attack graphs,” in

Proceedings of the 9th International Symposium On Recent Advances In Intrusion
Detection (RAID 2006), ser. Lecture Notes in Computer Science, vol. 4219, Hamburg,

Germany, September 2006, pp. 127–144.
4. P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE Transactions on

Software Engineering, vol. 37, no. 3, pp. 371–386, May 2011.
5. G. Jakobson, “Mission cyber security situation assessment using impact dependency

graphs,” in Proceedings of the 14th International Conference on Information Fusion
(FUSION), Chicago, IL, USA, July 2011.

21

6. K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing hardware relia-

bility,” in Proceedings of the 1st ACM Symposium on Cloud Computing, Indianapolis,
IN, USA, 2010, pp. 93–204.

7. P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers:

Measurement, analysis, and implications,” in Proceedings of the ACM SIGCOMM
2011, Toronto, ON, Canada, August 2011, pp. 350–361.

8. R. Jhawar and V. Piuri, “Fault tolerance management in iaas clouds,” in Proceedings of

the IEEE First AESS European Conference on Satellite Telecommunications (ESTEL
2012), Rome, Italy, October 2012.

9. D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling and analysis of
a virtualized system,” in Proceedings of the 15th IEEE Pacific Rim International

Symposium on Dependable Computing (PRDC 2009), Shanghai, China, November

2009, pp. 365–371.
10. M. Albanese, S. Jajodia, R. Jhawar, and V. Piuri, “Reliable mission deployment in

vulnerable distributed systems,” in Proceedings of the 43rd IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops (DSN-W 2013), Bu-
dapest, Hungary, June 2013.

11. M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, “A security analysis

of amazon’s elastic compute cloud service,” in Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC 2012), 2012, pp. 1427–1434.

12. R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance management in cloud

computing: A system-level perspective,” IEEE Systems Journal, vol. 7, no. 2, pp.
288–297, June 2012.

13. B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield, “Remus:
High availability via asynchronous virtual machine replication,” in Proceedings of the

5th USENIX Symposium on Networked Systems Design and Implementation (NSDI

2008). San Francisco, CA, USA: USENIX Association, 2008, pp. 161–174.
14. W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret, “Availability analysis of

blade server systems,” IBM Systems Journal, vol. 47, no. 4, pp. 621–640, 2008.

15. A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated availability in cloud com-
puting slas,” in Proceedings of the 12th IEEE/ACM International Conference on Grid

Computing (GRID 2011), Lyon, France, September 2011, pp. 129–136.

16. R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements for resource
management in cloud computing,” in Proceedings of the 15th IEEE International Con-

ference on Computational Science and Engineering (CSE 2012), Paphos, Cyprus, De-

cember 2012, pp. 170–177.

22

