
A Model-Based Approach to Reliability

Certification of Services

Claudio A. Ardagna, Ernesto Damiani, Ravi Jhawar, Vincenzo Piuri

DTI – Università degli Studi di Milano

Crema (CR), 26013, Italy

Email: firstname.lastname@unimi.it

Abstract—We present a reliability certification scheme in which
services are modeled as discrete-time Markov chains. A machine-
readable certificate is issued to the service after validating its re-
liability properties, and validity of the certificate is verified using
constant run-time monitoring. In addition, we present a solution
that allows users to search and select services with a given set of
reliability properties. Our solution is integrated within existing
Service-Oriented Architectures (SOAs), and allows validation of
users’ preferences both at discovery-time and at run-time.

Index Terms—Markov Chains, Reliability Certification, SOA,
Web Services

I. INTRODUCTION

The increasing demand for flexibility and extensibility in

software reuse and integration has resulted in a wide adoption

of web services and SOA applications. The availability of

a range of published services by different providers, cou-

pled with XML-based web service protocols, form a digital

ecosystem that allows the design and orchestration of business

processes across organization boundaries [8], [15]. While the

benefits are immense, this dynamic paradigm of building soft-

ware has changed the dimension and scope of risks in business

process development and, as a result, users are increasingly

concerned about failures that may affect functional and non-

functional properties of their applications. In this context,

trustworthiness of services is a critical factor for users, and

raises the need of adapting current development, verification,

validation, and certification techniques to the SOA vision [5],

[7], [9]. In particular, the definition of assurance techniques

increasing users’ confidence that a service complies with their

reliability requirements becomes of utmost importance.

An emerging paradigm to address this issue is based on

certification of services [2], [6]. This approach, in contrast

to other software certification solutions (e.g., Common Cri-

teria [10]) that provide human-readable certificates, relies

on machine-readable certificates that can be used both at

discovery-time and at run-time. In this paper, we focus on

reliability certification where reliability properties of a ser-

vice are validated by means of formal model-checking. In

particular, we use Markov models to establish whether the

service supports a given reliability property with a given

assurance level. The result of a property validation is a

machine-readable certificate that represents the reasons why

the service supports a reliability property and serves as a

proof to the users that appropriate reliability mechanisms have

been considered while building it. Our certification scheme

also provides a mechanism where users can search and select

services with a certificate proving a set of reliability properties.

To complement the dynamic nature of SOA, properties in the

certificates are continuously verified by means of run-time

monitoring.

The paper is organized as follows. Section II describes the

reference scenario and basic concepts on reliability certifica-

tion. Section III presents an approach to service modeling.

Section IV describes our two-phase reliability certification

process. Section V discusses how to integrate the proposed

certification process within SOA to effectively match services’

certificates with users’ requirements. Section VI summarizes

the related work, and Section VII presents our conclusions.

II. REFERENCE SCENARIO AND BASIC CONCEPTS

We describe the reference scenario and some basic concepts

on reliability certification.

A. Reference Scenario

We consider a highly dynamic and distributed service-based

infrastructure which involves the following main parties.

• Certification Authority: The trusted entity that certifies

reliability properties of services.

• Service Provider: The entity that implements a service,

and engages with the certification authority to obtain a

certificate for its service.

• Client: The entity that establishes a business relationship

with one or more service providers, and uses a set of

certified services to implement its business process.

• Service Discovery: A registry of published services that

is enhanced to support reliability certification.

In this paper, as an example, we consider a service provider

offering a web-based storage service which allows its clients

to store and retrieve data over the Internet. A client can

integrate the storage service in its business process by ac-

cessing the interface published by the service provider. The

service implements a result write(data, metadata) operation

that takes the data and metadata as input from the client, stores

them on the remote server, and returns the result (success

or failure) of the operation. The data can then be retrieved

by the client by sending a query to the remote server using

the data read(query) operation, and can be deleted using the

result delete(metadata) operation. When a client implements

Ruggero
Casella di testo
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

its business process using the storage service, the functional

correctness of the business process strongly depends on the

storage service and, as a consequence, reliability of the storage

service becomes of paramount importance to the client. In this

context, a reliability certificate can serve as an effective means

of assurance to the client, by providing a proof that the storage

service supports a given set of reliability properties.

B. Basic Concepts

A service provider implements its service using a set of

reliability mechanisms, and engages with the certification

authority in a process that i) validates the reliability properties

of the implemented service, and ii) issues a certificate to the

service provider based on the results of the validation tests.

To validate the reliability properties of a given service, the

certification scheme must define a hierarchy of reliability prop-

erties to be certified, and a policy that contains all conditions

necessary to assess and prove that a given reliability property

holds for a service.

Hierarchy of reliability properties: We define a set of

abstract properties to represent the general purpose reliability

requirements of the service under certification. Examples

of abstract properties are reliability, availability, integrity,

and durability. A concrete property p=(p̂, A) enriches an

abstract property p̂ with a set A of attributes that refer to the

type of failures the service proves to tolerate, the reliability

mechanisms used to realize the service, or to a specific

configuration of reliability mechanisms that characterizes the

service to be certified. For each attribute a∈A, a partial (or

total) order relationship �a can be defined on its domain

Ωa, and v(a) represents the value of a. If an attribute

does not contribute to a property configuration, its value

is not specified. In general, property attributes represent

service provider’s claims on the reliability of its service

(e.g., when a=fault type, v(a) can be “crash failure” or

“programming error” or “byzantine failure”).1 A hierarchical

ordering of reliability properties can then be defined by a

pair (P,�P), where P is the set of all concrete properties,

and �P is a partial order relationship over P . We note

that an abstract property corresponds to a concrete property

with no attributes specified. Given two properties pi,pj∈P ,

pi�P pj if i) pi.p̂=pj .p̂ and ii) ∀a∈A either vi(a) is not

specified or vi(a)�avj(a). In other words, pi�P pj means

that a service certified for pj always holds pi. For instance,

given p1=(reliability,{mechanism=redundancy, level=2,

fault type=server crashes, failure detection=heartbeat test})
and p2=(reliability,{mechanism=redundancy, level=3,

fault type=server crashes, failure detection=heartbeat test,

max recovery time=15ms}), p1�P p2.

Policy: A certification scheme must verify that a reliability

property p is supported by the service. To this aim, we

first define a policy Pol(p)→{c1, c2, . . . , cm} that contains

all conditions c1, . . . , cm necessary to prove that p holds

1Note that, the fault model is equivalent to the attacker model in terms of
security properties of a service.

for the service. We then enhance the model of the service

with Pol(p) to validate and prove p (see Section III).

We note that proving a concrete property is equivalent to

validating the reliability mechanisms used to implement

the service. Based on this observation, we can define a

policy corresponding to each property configuration, where

each condition ci in the policy defines a relationship

derived by attributes in A. For instance, for a reliability

property p=(reliability,{mechanism=redundancy, level=3,

fault type=server crashes, failure detection=heartbeat test,

max recovery time=15ms}), a policy can be

defined with conditions: c1:no of server instances≥3,

c2:recovery time≤15ms. Here, each condition ci is of the

form c:{a op v}, where op specifies a relationship on an

attribute a and its expected value v based on the reliability

property to be certified and reliability mechanisms used to

implement the service. In this context, a reliability certificate

is granted to the service when it satisfies all the conditions

in the policy and proves that it holds a reliability property p

with a given level of assurance (see Section IV).

III. SERVICE MODELING

The modeling of services as finite state automata has been

used in the past to estimate and improve reliability, as well

as to test and certify security properties of services (e.g., [1],

[3], [5], [9]). The certification scheme presented in this paper

uses state-based, discrete-time Markov models that combine

the failure behavior and system architecture of the service

to validate and certify a given set of reliability properties.

We represent the control-flow of a service in the form of a

graph G=(N,E) where each node n∈N corresponds to a state

of the service, and a direct edge (ni, nj)∈E represents the

transfer of control from node ni to node nj . The transition

from one state to another is assumed to follow the Markov

property, regardless of the point in time at which the transition

occurs. The graph G is enriched with i) policy conditions

associated to each state transition, and ii) two absorbing states

C and F representing the states of correct output and failure,

respectively. From a certification point of view, state C is

reached when the service satisfies the policy Pol, while state

F is reached in case of a failure or policy violation. The

transition probability Prij to satisfy the policy condition is

associated with each directed edge (ni, nj), and the probability

Ri to remain fail-free is associated with each node ni. In this

context, similar to [4], RiPrij represents the probability that

execution of a service in state ni will produce the correct

results, and transfer the control to state nj . The transition from

the final state nk to the correct state C, having probability

Rk, is observed if the service satisfies all conditions in Pol

(with no failures). We note that there is an implicit transition

of probability 1−
k
∑

j=1

RiPrij from each node ni 6=nk to F

representing a failure or violation of the policy condition at

that node. The transition from nk to F has probability 1−Rk.

A model deduced from the graph G is defined as follows.

Definition 1 (Service model). The model of a service is a 7-

tuple {n1, NI , nk, C, F,
cij
→, RiPrij}, where: n1 is the initial

state; NI represents all intermediate states n2, . . . , nk−1; nk

is the final execution state; C is the final correct state; F is

the final failure state;
cij
→ represents a transition between two

nodes (ni, nj) labeled with a policy condition cij∈Pol(p); and

RiPrij is the probability that the service execution provides

the correct results and satisfies the policy conditions in state

ni, and moves to state nj .

A model is represented by a transition matrix Q′ as follows.

Q′ =

C F n1 n2 . . . nk

C 1 0 0 0 . . . 0
F 0 1 0 0 . . . 0

n1 0 1−
k
∑

j=1

R1Pr1j R1Pr11 R1Pr12 . . . R1Pr1k

n2 0 1−
k
∑

j=1

R2Pr2j R2Pr21 R2Pr22 . . . R2Pr2k

...
...

...
...

...
...

...

nk Rk 1−Rk 0 0 . . . 0

We note that, for the sake of clarity, policy conditions are not

reported in Q′. The certification authority uses the matrix Q′ to

estimate the extent to which the service satisfies the reliability

property p by following the approach presented in [4]. Let Q

be a matrix obtained from Q′ by deleting rows and columns

corresponding to C and F ; µ is a matrix such that

µ = I +Q+Q2 +Q3 · · · =

∞
∑

x=0

Qx = (I −Q)
−1

where I is the identity matrix with same dimension as Q.

Here, the assurance level of the service is defined as follows.

Definition 2 (Assurance level). The assurance level L of a

service deployed in a specific environment is the probability

that it satisfies a policy Pol(p) and holds a reliability property

p∈P for a given rate of service executions.

We note that the assurance level characterizes the extent to

which a service communication that starts from the initial state

n1 will reach the final execution state nk, and transit from nk

to the final correct state C. Assurance level L of a service

can be estimated using L=µ1,k∗Rk, where µ1,k represents

the probability value at 1st row and kth column of the matrix

µ, and Rk is the probability of the final execution state to be

fail-free. µ1,k can also be computed using

µ1,k = (−1)
k+1 |Q|

|I −Q|

where |Q| and |I − Q| represent the determinant of Q and

I −Q, respectively.

Example 1. Figure 1 shows an example of a Markov model

enhanced with policy conditions, representing the write op-

eration of the storage service. The service starts from the

initial state n1 when it receives a valid input during a re-

sult write(data, metadata) operation. In this state, failures

may happen due to some unexpected errors in input manage-

ment (e.g., request overflow and timeout), resulting in a direct

n1 n2 n3

F

C

[c1] [c2]

Fig. 1. An example of a model of the storage service for the write operation

(n1, F) transition. For the service to move from the input state

n1 to n2, the policy condition [c1] calls a method to check

if the data provided by the user have been managed correctly,

and if the index is successfully generated.2 In state n2, data,

metadata, and index are stored across all redundant storage

servers. The corresponding policy condition [c2] checks if

success is returned by all servers. A policy violation/failure

in this state results in a transition to the failure state F . State

n3 represents the final output state of the service for a write

operation. An implicit transition from n3, to the final correct

state C happens with a probability R3, resulting in a fail-

free operation. Let us assume that fail-free probabilities of the

nodes computed by the certification authority are: R1 = 0.99,

R2 = 0.94, and R3 = 0.97, and transition probabilities

between nodes are Pr12 = 0.93 and Pr23 = 0.95. The

corresponding transition matrix Q′ is

Q′ =

C F n1 n2 n3

C 1 0 0 0 0
F 0 1 0 0 0
n1 0 0.0793 0 0.9207 0
n2 0 0.107 0 0 0.893
n3 0.97 0.03 0 0 0

and the matrix µ is:

µ = (I −Q)−1 =

1 0.9207 0.8222
0 1 0.893
0 0 1

Here, µ1,3=0.8222. The probability of the storage service

to satisfy a reliability property is L=0.8222∗0.97=0.7975.

IV. RELIABILITY CERTIFICATION PROCESS

The task of certifying reliability of services involves spec-

ification of reliability properties to be certified, definition of

efficient policies that can sufficiently prove that each property

holds, and deduction of a model to validate and verify poli-

cies against the real service implementation. In this section,

we present our certification scheme which is designed as a

two-phase process. The first phase validates the reliability

properties of a service before it is actually deployed in a

system (offline), and issues a certificate to the service based

on initial validation results. The second phase monitors the

certified properties of each service at run-time (online). For

2For the sake of simplicity, the model of the service does not consider
exception management.

simplicity, in the following, we assume a certification process

which proves (and awards certificates with) a single property.

A. Offline Phase

The offline phase starts when a service provider requests

the certification authority to issue a certificate for a reliability

property p to its service. The model used to validate the

property p of the service can be either generated by the

certification authority itself, or directly provided by the service

provider.3 After verifying that the model conforms to the

real service implementation, the certification authority selects

a policy Pol(p) based on p and identifies the reliability

mechanisms used to implement the service. The certification

authority then enhances the model with policy conditions,

and defines a validation function to verify that the service

satisfies all the conditions. We assume that each condition

is specified as a boolean valued predicate. The validation

function is formally defined as follows.

Definition 3 (Validation function). A validation function

f :(s, p, Pol(p),M, k)→{true, false} takes the service s un-

der evaluation, the reliability property p to be validated, the

policy Pol(p) selected by the certification authority, the model

M of the service, and an index k that refers to the service

execution that triggers policy verification as input, and returns

true when all conditions in Pol(p) corresponding to p are

satisfied with respect to M , false otherwise, as output.

We note that the model of the service, the reliability property,

and the policy remain constant, while the index k may change

over time. We also note that the service is static, while its

context changes. In particular, k is an index referring to

the service executions (i.e., the validation tests) used by the

certification authority to verify the reliability property of the

service under different contexts (e.g., using fault injection).

Example 2. In Figure 2, we extend the model in Figure 1 with

the stateful implementation of a three-replica storage service

to certify p=(reliability,{mechanism=redundancy, level=3,

fault type=server crashes, failure detection=heartbeat test,

max recovery time=15ms}). Based on this model, the

certification authority validates p by performing a sequence of

tests. At each test iteration for the write operation, the service

starts from state n1 and, if the condition [c1] is verified using

f , it transits to the sub-state n2a where the service sends the

request to all three replicated storage servers. We note that,

[c1] in this example is equivalent to [c1] in Example 1. At

this point, the service moves to state n2b if at least a server

crash is detected by the heartbeat test (i.e., f verifies [c2]);

otherwise, service transits to state n2c when all servers are

fail-free (f verifies [c3]). In state n2b, the service invokes

recovery mechanisms, and a transition to n2d is observed

only if the server crash is recovered in at most 15ms and

success is returned by all three servers ([c4]); otherwise, the

3We note that the service model is neither used to estimate the functional
behavior of the service nor the overall reliability, but to validate reliability
properties supported by the service and to consequently generate a certificate.

n1

n2 n2a

n2b

n2c

n2d

n3

FC

[c1] [c2]

[c3]

[c4]

[c5]

[c6]

Fig. 2. An example of a model representing a stateful implementation of
the storage service for the write operation

service moves to the failure state F . A transition (n2c, n2d) is

observed if success is returned by all storage servers ([c5]).

In the transition from n2d to the final execution state n3, f

performs an integrity check by comparing the hash values of

data from all three servers ([c6]). To conclude, f returns true

(i.e., move to C) if all conditions are satisfied, and returns

false (i.e., move to F), otherwise.

The results of the validation function are used by the

certification authority to estimate the values of Ri and Prij in

Definition 1, and L in Definition 2. To this aim, we introduce

a frequency log that maintains f ’s results. A frequency log

is a list of triplets (k, {vk}, ni), where: k is the index of the

test request in Definition 3; {vk} represents the attribute value

causing a transition to F ; and ni is the state of the service

model in which a transition to F is observed. We note that

{vk} and ni are empty if f returns true. Each probability

RiPrij can then be calculated, using the frequency log, as

the number of successful transitions from ni to nj over the

total number of test requests reaching ni. The total number of

requests is such that each path in the model is tested for a given

number of times. As an example, suppose that the service fails

to recover from a server crash in state n2b; the frequency log

registers k, the state n2b, and the snapshot of changed real-

attribute values, such as, no of server instances=2. We note

that, in Example 2, the probability value R2Pr23 is deduced

from the results of the validation function f in states n2a−n2d.

The assurance level L in Definition 2 is then quantified

by performing the matrix operations described in Section III,

and used to characterize the reliability property of a service.

A reliability certificate is issued to the service, if the value

of L is above a certain predefined threshold T , and is of

the form C(p,M,L), where: i) p represents the reliability

property supported by the service; ii) M represents the model

that is used to validate p. M serves as a basis for the

certification authority to prove to the client that the service

satisfies the conditions defined in Pol(p) and supports p; iii) L

represents the assurance level with which the service supports

the reliability property p.

B. Online Phase

The online phase starts immediately after the service

provider deploys its certified service. In this phase, the cer-

tification authority continuously verifies the validity of the

reliability certificate issued to the service, since, in dynamic

complex digital ecosystems, reliability properties may change

over time resulting in outdated certificates. For example,

reliability of the service may be affected if a replica failure

or network congestion happens. To this aim, we introduce

Evaluation Body, a component that is owned by the certifi-

cation authority and placed in the system where the service

is deployed to monitor the reliability property of the service

using its model.

Since a Markov model generates all possible states of the

service, the number of states can be extremely large. However,

to monitor reliability properties of a service, we do not need

the complete model. We therefore propose that the certification

authority derives a lightweight reduced model by reducing

the original one, while maintaining its accuracy. A reduced

Markov model is formally defined as follows.

Definition 4 (Reduced Markov model). A reduced Markov

model M̃ , which is derived from the original model M ,

is of the form M̃={n1, ÑI , nk, C, F,
cij
→, RiPrij}, such

that, |M̃(ÑI)|<|M(NI)| and, for all validation tests,

i) f(s, p, Pol(p), M̃ , k)=f(s, p, Pol(p),M, k) and ii) the fre-

quency logs for M and M̃ are consistent.

We note that the frequency logs are consistent if, for each entry

(k, {vk}, ni) in M and (k̃, {ṽk}, ñi) in M̃ , k=k̃, {vk}={ṽk},

and ni=ñi or ñi is a combination of states including ni.

For example, states n2b and n2c of the original model M in

Figure 2 can be combined to a single state ñ2bc to obtain a

reduced Markov model M̃ . In M̃ , service moves from n2a to

ñ2bc following a combination of [c2] and [c3], and from ñ2bc

to n2d following a combination of [c4] and [c5]. We note that,

the transition (ñ2bc, F) is a combination of transitions (n2b, F)

and (n2c, F) in M . The results of f using M̃ are then the same

as the ones obtained using M .

At run-time, evaluation body performs monitoring of the

service executions by obtaining real-attribute values using M̃ .

A reliability certificate issued to a service remains valid if

its real-attribute values satisfy all conditions in the policy

with a given level of assurance. For each service execution

validated using f(s, p, Pol(p), M̃ , k), the probability values in

the original service model M (and matrix Q′) must be updated

using the results of f , and the assurance level of the service

must be recomputed in order to verify if L≥T . To this aim, as

in the offline phase, we use the frequency log, maintaining f ’s

results, within the evaluation body. We note that the source

of failure or policy violation in M can be precisely located

using the frequency log and M̃ . We also note that the update

of the matrix Q′ is not done in real time, but periodically, to

preserve system performance.

By analogy with the offline phase, we extend the notion

of L to support the validation process of the certification

authority, and define a random variable Lt to characterize the

reliability property of a service at run-time. Given the time

instant t at which the evaluation body starts the matrix update,

Lt represents the assurance level of the service quantified

by the matrix Q′ updated using the reduced Markov model

M̃ and the frequency log. The assurance level Lt observed

by the evaluation body leads to the following conditions: i)

Lt≥L0, where L0 is the assurance level when the certificate

was issued to the service. This implies that Lt≥T , that is,

the assurance value of the service during run-time is still

greater than a predefined threshold value, and the reliability

property of the service remains valid; ii) Lt<L0. In this case,

the evaluation body first checks whether Lt≥T . If not, the

certification authority either revokes the certificate, or updates

the property in the certificate, based on the new value Lt and

the reliability property p.

V. RELIABILITY CERTIFICATE MATCHING

We aim to provide a solution where services can be searched

and selected at run-time based on client’s reliability require-

ments. To achieve this, our service discovery component

provides an extended service registry to support the matching

and comparison processes. The matching process performs a

check in the service registry to obtain the set of services that

meet client’s preferences on reliability properties, whereas the

comparison process performs a ranking of services within the

set generated by the matching process to support a client in

selecting the most appropriate service.

In the matching process, a client c first defines its prefer-

ences Rc(pc, Lc) in terms of requirements on the reliability

property pc and the assurance level Lc a service should

possess. A service discovery engine then performs an auto-

matic matching of client’s requirements against the reliability

certificates of services in the registry, and returns the set of

services satisfying the required property with a given level

of assurance. Let us consider a service discovery with a

set of services, each one having a certificate of the form

Cs(ps,Ms, Ls), where ps is a reliability property, Ms is the

service model, and Ls is the assurance level of the service

obtained by policy validation using Ms. The matching process

returns a set S of services for which pc�P ps∧Lc≤Ls.

The comparison process takes S as input and generates an

ordering of services. The goal of this phase is to rank the

shortlisted set S of services based on a client’s preferences

so as to facilitate it in selecting the best service. Given two

services si,sj∈S, the ordering of services is performed based

on the hierarchical relationship among reliability properties

(e.g., pi�P pj) and assurance level values (e.g., Li≤Lj). We

note that, in some cases, there can be inconsistencies in the

comparison (e.g., pi�P pj but Lj<Li). In this context, we

define a precedence in which the property is more important

than the assurance level. A (partially) ordered set S′ of services

is returned to the client as the output of the comparison phase.

Example 3. Consider a service discovery having services s1,

s2, s3, with certificates C1, C2, C3, respectively, where:

C1=[(reliability,{mechanism=redundancy; level=3;

fault type=server crashes}), M1, 0.95],

C2=[(reliability,{mechanism=redundancy; level=4;

fault type=software errors}), M2, 0.98], and

C3=[(reliability,{mechanism=redundancy; level=2;

fault type=server crashes}), M3, 0.90].

Then, consider that a client’s preferences are:

Rc=(reliability,{mechanism=redundancy;level>2},≥0.90).
The set S of services returned by the matching process is

{s1, s2}. Service s3 is not selected because pc 6�P ps, that is,

redundancy level of s3 is ≤2. The comparison process ranks

{s1, s2} and returns {s2, s1} since p1�P p2∧L1≤L2.

We extend our matching and comparison processes to

complement our certification scheme and provide a two-phase

matching and comparison solution. In the first phase, a static

matching and comparison is performed when the client sends

a request to the service discovery. The second phase starts

when the client selects a service si∈S
′. In this phase, service

discovery performs constant monitoring of the certificate status

for si. If a certificate update is observed (i.e., Li<T), a com-

parison of client’s preferences against the updated certificate

Cu(pu,Mu, Lu) is performed. If pc 6�P pu∨Lu<Lc, the service

discovery triggers the matching and comparison processes

to generate a new S′ for the client; otherwise, the service

continues uninterrupted.

VI. RELATED WORK

Modeling of software components has been used to improve

the reliability and to validate the correctness and security of

software systems. An interesting work [14] relevant to this

paper proposes a model-based approach to identify reliable

ways of designing the interactions in a system, where each

interaction is associated with the probability of its success.

In [4], the authors put forward the idea that the reliability of

a software system depends on the reliability of its compo-

nents and the probabilistic distribution of their utilization. A

simple Markov model is then used to measure the software

reliability and calculate the effects of failures on the system

with respect to a user environment. Other Markovian model-

based approaches have been proposed to evaluate system

reliability and to generate the evidence proving it (e.g., [11],

[13]). In contrast to Markov models, Petri nets are often

employed to verify the feasibility and correctness of business

process configurations (e.g., [16]). Although these models are

effective in establishing functional requirements of service

compositions, they seemingly overkill our goals of validating

and monitoring reliability properties of individual services and

add complexity in determining assurance level values. The

work most relevant to our proposal [2] presents a test-based

reliability certification scheme for services that provides an

a priori validation of services based on underlying reliability

patterns, and a posteriori test on service reliability using a set

of metrics. Differently from the above works, our proposal

provides a certification scheme based on formal modeling to

prove reliability properties of services at a given level of as-

surance. This scheme also supports matching and comparison

of services based on user’s requirements.

VII. CONCLUSIONS

We presented a reliability certification scheme in which a

machine-readable certificate is issued to a service after vali-

dating its reliability properties using a discrete-time Markov

model. The service is then continuously monitored at run-

time using a reduced model to verify the validity of the

issued certificate. Furthermore, we proposed a solution that

allows clients to search and select services with a given set

of reliability properties and ensures that client’s preferences

are maintained at run-time. Our future work will consider the

formulation of an enhanced approach to quantify the assurance

level and provide certificate updates, and a more complete

evaluation of the proposed solution.

ACKNOWLEDGMENTS

This work was partly funded by the European Commission

under the project ASSERT4SOA (contract n. FP7-257351),

and by the Italian Ministry of Research within the PRIN 2008

project PEPPER (2008SY2PH4).

REFERENCES

[1] M. Anisetti, C. Ardagna, and E. Damiani, “Fine-grained modeling of
web services for test-based security certification,” in Proc. of SCC 2011,
Washington, DC, USA, July 2011.

[2] I. Buckley, E. Fernandez, M. Anisetti, C. Ardagna, and E. Damiani,
“Towards pattern-based reliability certification of services,” in Proc. of

DOA-SVI 2011, Hersonissos, Crete, Greece, October 2011.
[3] G. Canfora and M. di Penta, “Service-oriented architectures testing: A

survey,” Software Engineering: International Summer Schools, ISSSE

2006-2008, vol. 1, pp. 78–105, 2009.
[4] R. C. Cheung, “A user-oriented software reliability model,” IEEE

Transactions on Software Engineering, vol. 6, pp. 118–125, March 1980.
[5] V. Cortellessa and V. Grassi, “Reliability modeling and analysis of

service-oriented architectures,” in Test and Analysis of Web Services,
2007, pp. 339–362.

[6] E. Damiani, C. Ardagna, and N. E. Ioini, Eds., ”Open Source Systems

Security Certification”. New York, NY, USA: Springer, 2009.
[7] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Sama-

rati, “Securing SOAP e-services,” International Journal of Information

Security, vol. 1, no. 2, pp. 100–115, February 2002.
[8] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-

sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.
[9] L. Frantzen, J. Tretmans, and R. d. Vries, “Towards model-based testing

of web services,” in Proc. of WS-MaTe 2006, Palermo, Italy, June 2006.
[10] D. Herrmann, Using the Common Criteria for IT security evaluation.

Auerbach Publications, 2002.
[11] S. M. Iyer, M. K. Nakayama, and A. V. Gerbessiotis, “A markovian

dependability model with cascading failures,” IEEE Transactions on

Computers, vol. 58, pp. 1238–1249, September 2009.
[12] R. Jhawar, V. Piuri, and M. Santambrogio, “A comprehensive conceptual

system-level approach to fault tolerance in cloud computing,” in IEEE

SysCon 2012, Vancouver, BC, Canada, March 2012.
[13] J. K. Muppala, M. Manish, and T. K. S., “Markov dependability models

of complex systems: Analysis techniques,” In Ozekici, S. (ed.) Reliability

and Maintenance of Complex Systems, NATO ASI Series F: Computer

and Systems Sciences, vol. 154, pp. 442–486, 1996.
[14] S. Mustafiz, X. Sun, J. Kienzle, and H. Vangheluwe, “Model-driven

assessment of system dependability,” Software and System Modeling,
vol. 7, no. 4, pp. 487–502, 2008.

[15] M. P. Papazoglou, “Web services and business transactions,” World Wide

Web, vol. 6, pp. 49–91, March 2003.
[16] W. van der Aalst, N. Lohmann, and M. La Rosa, “Ensuring correctness

during process configuration via partner synthesis,” Journal of Informa-

tion Systems, vol. 37, no. 6, pp. 574–592, September 2012.

