
Policies, Models, and Languages for Access
Control

Sabrina De Capitani di Vimercati1, Pierangela Samarati1, and Sushil Jajodia2

1 DTI - Università di Milano, 26013 Crema - Italy
{decapita, samarati}@dti.unimi.it

2 George Mason University, Fairfax, VA 22030-4444
jajodia@gmu.edu

Abstract. Access control is the process of mediating every request to
data and services maintained by a system and determining whether the
request should be granted or denied. Expressiveness and flexibility are
top requirements for an access control system together with, and usu-
ally in conflict with, simplicity and efficiency. In this paper, we discuss
the main desiderata for access control systems and illustrate the main
characteristics of access control solutions.

1 Introduction

One of the most important features of today’s systems is the protection of their
resources (i.e., data and services) against unauthorized disclosure (secrecy) and
intentional or accidental unauthorized changes (integrity), while at the same time
ensuring their accessibility by authorized users whenever needed (no denials-of-
service) [30]. Considerable effort is being devoted to addressing various aspects
of secrecy, integrity, and availability. However, historically, confidentiality has
received the most attention, probably because of its importance in military and
government applications. As a result, significant research has focused on achiev-
ing more expressive and powerful access control systems. Access control is the
act of ensuring that a user accesses only what she is authorized to and no more.
The development of an access control system requires the definition of the reg-
ulations according to which access is to be controlled and their implementation
as functions executable by a computer system. This development process is usu-
ally carried out with a multi-phase approach based on the concepts of security
policy , security model , and security mechanism. A policy defines the (high-level)
rules according to which access control must be regulated. An access control
model provides a formal representation of the access control security policy and
its working. The formalization allows the proof of properties on the security
provided by the access control system being designed [21]. A security mecha-
nism defines the low level (software and hardware) functions that implement the
controls imposed by the policy and formally stated in the model.

The traditional access control models used for describing the enforcement of
confidentiality are based on the definition of access control rules, called authoriza-

S. Bhalla (Ed.): DNIS 2005, LNCS 3433, 225–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

226 S. De Capitani di Vimercati, P. Samarati, and S. Jajodia

tions, which are of the form 〈subject, object, operation〉. These authorizations
specify which operations can be performed on objects by which subjects. How-
ever, in today’s systems the definition of an access control model is complicated
by the need to formally represent complex policies, where access decisions depend
on the application of different rules coming, for example, from laws practices,
and organizational regulations. A security policy must then combine all the dif-
ferent regulations to be enforced [34] and, in addition, must consider all possible
additional threats due to the use of computer systems. Given the complexity of
the scenario, the simple authorization triple 〈subject, object, operation〉 is no
more sufficient.

The remainder of this paper is organized as follows. Section 2 discusses the
main features supported by modern access control policies and models. Section 3
presents recent approaches in the area of access control languages. Finally, Sec-
tion 4 concludes the paper.

2 Policies and Models for Access Control

The access control service provided by the computer system should be expressive
and flexible enough to accommodate all the different requirements that may need
to be expressed, while at the same time be simple both in terms of use (so that
specifications can be kept under control) and implementation (so to allow for
its verification). In the following, we discuss the main features that an access
control service should support.

2.1 Conditions and Groups

Even early approaches to authorization specifications allowed conditions to be
associated with authorizations to restrict their validity. Conditions can make the
authorization validity dependent on the satisfaction of some system predicates
(system-dependent conditions) like the time or location of access. For instance,
a condition can be associated with the bank-clerks’ authorization to access ac-
counts, restricting its application only from machines within the bank building
and in working hours. Conditions can also constraint access depending on the
content of objects on which the authorization is defined (content-dependent con-
ditions). Content-dependent conditions can be used simply as way to determine
whether or not an access to the object should be granted or as way to restrict
the portion of the object that can be accessed (e.g., a subset of the tuples in a
relation). This latter option is useful when the authorization object has a coarser
granularity than the one supported by the data model [11]. Other possible con-
ditions that can be enforced can make an access decision depend on accesses
previously executed (history dependent conditions).

Another feature usually supported even by early approaches is the concept of
user groups (e.g., Employees, Programmers, Consultants). Groups can be nested
and need not be disjoint. Figure 1 illustrates an example of user-group hierar-
chy. Support of groups greatly simplifies management of authorizations, since
a single authorization granted to a group can be enjoyed by all its members.

Policies, Models, and Languages for Access Control 227

Public

Medical Staff

����������
Office CEO

����������

Doctors

����������
Temporary Nurses

����������
Seniors

DWard1

����
DWard2

����
NWard1

����
NWard2

����
Elen

Alice Bob Carol

����������
David

Fig. 1. An example of user-group hierarchy

Mail

Work

���������������
Personal

�������������

Supervisor

						
Colleagues

Friends

						
Parents

Fig. 2. An example of object hierarchy

Later efforts moved to the support of groups on all the elements of the autho-
rization triple (i.e., subject, object, and operation), where, typically, groups are
abstractions hierarchically organized. For instance, in an operating system the
hierarchy can reflect the logical file system tree structure, while in object-oriented
system it can reflect the class (is-a) hierarchy. Figure 2 illustrates an example
of object hierarchy. Even operations can be organized hierarchically, where the
hierarchy may reflect an implication of privileges (e.g., write is more powerful
than read [29]) or a grouping of sets of privileges (e.g., a “writing privileges”
group can be defined containing write, append, and undo [32]). These hierarchi-
cal relationships can be exploited i) to support preconditions on accesses (e.g.,
in Unix a subject needs the execute privilege on a directory to access the files
within it), or ii) to support authorization implication, that is, authorizations
specified on an abstraction apply to all its members. Support of abstractions
with implications provides a short hand way to specify authorizations, clearly
simplifying authorization management. As a matter of fact, in most situations
the ability to execute privileges depends on the membership of users into groups
or objects into collections: translating these requirements into basic triples of
the form 〈user, object, operation〉 that then have to be singularly managed is
a considerable administrative burden, and makes it difficult to maintain both
satisfactory security and administrative efficiency.

2.2 Positive and Negative Authorizations

Although there are cases where abstractions can work just fine, many will be the
cases where exceptions (i.e., authorizations applicable to all members of a group
but few) will need to be supported. This observation has brought to the combined

228 S. De Capitani di Vimercati, P. Samarati, and S. Jajodia

support of both positive and negative authorizations. Traditionally, positive and
negative authorizations have been used in mutual exclusion corresponding to
two classical approaches to access control, namely:

Closed policy: authorizations specify permissions for an access. The closed
policy allows an access if there exists a positive authorization for it, and denies
it otherwise.

Open Policy: (negative) authorizations specify denials for an access. The open
policy denies an access if there exists a negative authorization for it, and allows
it otherwise.

The open policy has usually found application only in those scenarios where
the need for protection is not strong and by default access is to be granted.
Most systems adopt the closed policy, which, denying access by default, en-
sures better protection; cases where information is public by default are en-
forced with a positive authorization on the root of the subject hierarchy (e.g.,
Public).

The combined use of positive and negative authorizations was therefore con-
sidered as a way to conveniently support exceptions. To illustrate, suppose we
wish to grant an authorization to all members of a group composed of one thou-
sand users, except to one specific member Alice. In a closed policy approach,
we would have to express the above requirement by specifying a positive autho-
rization for each member of the group except Alice.1 However, if we combine
positive and negative authorizations we can specify the same requirement by
granting a positive authorization to the group and a negative authorization to
Alice.

The combined use of positive and negative authorizations brings now to the
problem of how the two specifications should be treated:

– what if for an access no authorization is specified? (incompleteness)
– what if for an access there are both a negative and a positive authorization?

(inconsistency)

Completeness can be easily achieved by assuming that one of either the open
or closed policy operates as a default , and accordingly access is granted or de-
nied if no authorization is found for it. Note that the alternative of explicitly
requiring completeness of the authorizations is too heavy and complicates ad-
ministration.

Conflict resolution is a more complex matter and does not usually have
a unique answer [18, 25]. Rather, different decision criteria could be adopted,
each applicable in specific situations, corresponding to different policies that
can be implemented. Examples of different conflict resolution policies are given
below.

1 In an open policy scenario, the dual example of all users, but a few, who have to be
denied an access can be considered.

Policies, Models, and Languages for Access Control 229

Denials Take Precedence. Negative authorizations are always adopted when a
conflict occurs (it satisfies the “fail safe principle”). In other words, the principle
says that if we have one reason to authorize an access, and another to deny it,
then we deny it.

Most Specific Takes Precedence. A natural and straightforward policy is the one
stating that “the most specific authorization should be the one that prevails”;
after all this is what we had in mind when we introduced negative authorizations
in the first place (our example about Alice). Although the most-specific-takes-
precedence principle is intuitive and natural and likely to fit in many situations,
it is not enough. As a matter of fact, even if we adopt the argument that the
most specific authorization always wins (and this may not always be the case)
it is not always clear what more specific is:

– what if two authorizations are specified on non-disjoint, but non-hierarchically
related groups (e.g., NWard1 and NWard2 in Figure 1)?

– what if for two authorizations the most specific relationship appear re-
versed over different domains? For instance, consider authorizations (Doc-
tors, read+, Mail) and (Medical Staff, read−, Personal); the first has a more
specific subject, while the second has a more specific object (see Figures 1
and 2).

Most Specific Along a Path Takes Precedence. This policy considers an autho-
rization specified on an element x as overriding an authorization specified on
a more general element y only for those elements that are members of y be-
cause of x. Intuitively, this policy takes into account the fact that, even in the
presence of a more specific authorization, the more general authorization can
still be applicable because of other paths in the hierarchy. For instance, consider
the group hierarchy in Figure 1 and suppose that for an access a negative au-
thorization is granted to Medical Staff while a positive authorization is granted
to Nurses. What should we decide for Carol? On the one side, it is true that
Nurses is more specific than Medical Staff; on the other side, however, Carol be-
longs to Temporary, and for Temporary members the negative authorization is
not overridden. While the most-specific-takes-precedence policy would consider
the authorization granted to Medical Staff as being overridden for Carol, the
most-specific-along-a-path considers both authorizations as applicable to Carol.
Intuitively, in the most-specific-along-a-path policy, an authorization propagates
down the hierarchy until overridden by a more specific authorization [15].

Priority Level. The most specific argument does not always apply. For instance,
an organization may want to be able to state that consultants should not be given
access to private projects, no exceptions allowed . However, if the most specific
policy is applied, any authorization explicitly granted to a single consultant will
override the denial specified by the organization. To address situations like this,
some approaches proposed adopting explicit priorities; however, these solutions
do not appear viable as the authorization specifications may result not always
clear.

230 S. De Capitani di Vimercati, P. Samarati, and S. Jajodia

Positional. Other approaches (e.g., [32]) proposed making authorization priority
dependent on the order in which authorizations are listed (i.e., the authorizations
that is encountered first applies). This approach, however, has the drawback that
granting or removing an authorization requires inserting the authorization in the
proper place in the list. Beside the administrative burden put on the adminis-
trator (who, essentially, has to explicitly solve the conflicts when deciding the
order), specifying authorizations implies explicitly writing the ACL associated
with the object, and may impede delegation of administrative privileges.

Grantor- or Time-Dependent. Other possible ways of defining priorities can
make the authorization’s priority dependent on the time at which the autho-
rizations was granted (e.g., more recent authorizations prevails) or on priorities
between the grantors. For instance, authorizations specified by an employee may
be overridden by those specified by her supervisor; the authorizations specified
by an object’s owner may override those specified by other users to whom the
owner has delegated administrative authority.

As it is clear from this discussion, different approaches can be taken to deal
with positive and negative authorizations. Also, if it is true that some solutions
may appear more natural than others, none of them represents “the perfect
solution”. Whichever approach we take, we will always find one situation for
which it does not fit. Also, note that different conflict resolution policies are
not mutually exclusive. For instance, one can decide to try solving conflicts
with the most-specific-takes-precedence policy first, and apply the denials-take-
precedence principle on the remaining conflicts (i.e., conflicting authorizations
that are not hierarchically related).

The support of negative authorizations does not come for free, and there
is a price to pay in terms of authorization management and less clarity of the
specifications. However, the complications brought by negative authorizations
are not due to negative authorizations themselves, but to the different semantics
that the presence of permissions and denials can have, that is, to the complex-
ity of the different real world scenarios and requirements that may need to be
captured. There is therefore a trade-off between expressiveness and simplicity.
For this reason, most current systems adopting negative authorizations for ex-
ception support impose specific conflict resolution policies, or support a limited
form of conflict resolution. (e.g., see the Apache server [1] where authorizations
can be positive and negative and an ordering can be specified dictating how neg-
ative and positive authorizations are to be interpreted). More recent approaches
are moving towards the development of flexible frameworks with the support of
multiple conflict resolution and decision policies.

2.3 Attribute-Based Specifications

In an open system like the Internet, the different parties (clients and servers)
that interact with each other to offer services are usually strangers. They have
no preexisting relationship and are not in the same security domain. Therefore,
on the one side the server may not have all the information it needs to decide

Policies, Models, and Languages for Access Control 231

whether or not an access should be granted. On the other side, however, the
client may not know which information she needs to present to a (possibly just
encountered) server to get access. All this requires a new way of enforcing the
access control process, which cannot be assumed anymore to operate with a
given prior knowledge and return a yes/no access decision. Rather, the access
control process should be able to operate without a priori knowledge of the party
requesting access and return the information of the requisites that it requires
be satisfied for the access to be allowed [2, 17]. Also, the traditional “identity-
based access control models” where subjects and objects are usually identified
by unique names are not appropriate in this setting. Instead, attributes other
than identity are useful in determining the party’s trustworthiness. In this con-
text, access restrictions to the data/services should be expressed by policies that
specified the properties (attributes) that a requester should enjoy to gain access
to the data/services. Some proposals have been developed that use digital certifi-
cates. Traditionally, the widely adopted digital certificate has been the identity
certificate. An identity certificate is an electronic document used to recognize an
individual, a server, or some other entity, and to connect that identity with a
public key [3, 4, 8]. More recent research and development efforts have resulted in
a second kind of digital certificate, the attribute certificate [14] that can be used
for supporting and attribute-based access control. An attribute certificate has
a structure similar to an identity certificate but contains attributes that spec-
ify access control information associated with the certificate holder (e.g., group
membership, role, security clearance). One of the most important aspects that
attribute-based access control policies should support is the ability to specify
accesses to a collection of services based on a collection of attributes. In this con-
text, logic programming provides a convenient, expressive, and well-understood
framework in which to work with authorization policy. Jajodia et. al [33] pro-
pose a framework that models an attribute-based access control system using
logic programming with set constraints of a computable set theory. More pre-
cisely, the set theory used in this approach is CLP(SET), the hereditarily finite
and computable set theory developed by Dovier et al. [13]. Here, sets are con-
structed out of a finite universe by applying operators such as ∩, ∪, and so on.
A policy can refer to both attributes and services, and a two sorted first order
language with set variables is then used. The terms are constructed in the usual
way by means of variables and functions. Also, the approach supports two kinds
of predicates: those used to specify the computation domain and those used
to specify its sub-domain of constraints. To reduce the runtime inefficiency of
constrained logic programs, which is due to the backtracking through program
clauses, two techniques are used. The first technique consists in transforming
any attribute-based access control policy into one with less backtracking but
the same semantics. The second technique consists in materializing commonly
accessed predicates instances.

Bonatti and Samarati in [6] propose a uniform framework for regulating ser-
vice access and information disclosure in an open, distributed network system like
the Web. Access regulations are specified as logical rules, where some predicates

232 S. De Capitani di Vimercati, P. Samarati, and S. Jajodia

are explicitly identified. Attribute certificates are modeled as credential expres-
sions of the form credential name(attribute name1 = value term1),. . .,
attribute namen = value termn, where credential name is the attribute cre-
dential name, attribute namei is the attribute name, and value termi is either
a ground value or a variable. Besides credentials, the proposal also allows to
reason about declarations (i.e., unsigned statements) and user-profiles that the
server can maintain and exploit for taking the access decision. Communication
of requisites to be satisfied by the requester is based on a filtering and renaming
process applied on the server’s policy, which exploits partial evaluation tech-
niques in logic programs.

Although attribute-based access control polices allow the specifications of ac-
cess control rules with reference to generic attributes or properties of the involved
parties, they do not fully exploit the semantic power and reasoning capabilities
of emerging web applications. The next step in the development of expressive
and powerful access control models and policies should then be the support of
access control rules based on the rich ontology-based metadata associated with
both the subjects accessing the resources and the resources themselves [9].

3 Languages for Access Control

Languages for access control aim to support the expression and the enforcement
of policies [30]. Many of these languages are used for expressing generic asser-
tions about subjects (principals) such as the association of a principal with a
public key, the membership of a principal in a group, or the right of a prin-
cipal to perform a certain operation at a specified time [27]. They also serve
for combining policies from many sources, and thus for making authorization
decisions [5]. More broadly, the languages sometimes aim to support trust man-
agement [6, 31, 35]. Also, with the increasing number of applications that either
use XML as their data model, or export relational data as XML data, it becomes
critical to investigate the problem of access control for XML. To this purpose,
many XML-based access control language have been proposed [7, 10, 20, 26].
In particular, one of the most relevant XML-based access control language is
the eXtensible Access Control Markup Language (XACML). The purpose of
XACML is the expression of authorization policies in XML against objects that
are themselves identified in XML. XACML covers both an access control pol-
icy language and a request/response language. So besides defining who can do
what and when by generating the corresponding policies, it is also possible to
express access requests and responses in XACML. The eXtensible Access Con-
trol Markup Language (XACML) version 1.0 [26] has been an OASIS standard
since 2003. Improvements have been made to the language and incorporated in
version 2.0 [28].

Several of the most recent language designs rely on concepts and techniques
from logic, specifically from logic programming: Li et al.’s D1LP and RT [22,
23, 24], Jim’s SD3 [19], and DeTreville’s Binder [12]. The expressive power and
the formal foundations of logical formalisms are appealing in this context. Some

Policies, Models, and Languages for Access Control 233

researchers and practitioners object that logic-based specifications may be com-
plicated or even intimidating to some users. Security administrators and end
users need simple and user-friendly approaches that allow them to easily un-
derstand the system behavior and maintain control over security specifications.
It is tempting to conclude that logic-based approaches are not applicable, but
then one would also give up all the advantages of logic-based formulations that
enjoy a combination of clean foundations (hence, formal guarantees), flexibil-
ity, expressiveness, and declarativeness (so that users are not required to have
any programming ability). On the contrary, we believe that a careful choice of
syntax makes logic-based specifications accessible to a wide spectrum of users.
In the following section, we present one of the most representative logic-based
languages for access control.

3.1 A Flexible Authorization Framework

Jajodia et al. [18] worked on a proposal for a logic-based language that attempted
to balance flexibility and expressiveness on one side, and easy management and
performance, on the other. This language is a good representative for this line of
work. It allows representing different policies and protection requirements, while
at the same time providing understandable specifications, clear semantics, and
bearable data complexity. Their proposal for a flexible authorization framework
(FAF) corresponds to a polynomial (quadratic) time data complexity fragment
of default logic.

In FAF, policies are divided into four decision stages, corresponding to the
following policy components (Figure 4).

– Authorization Table. This is the set of explicitly specified authorizations.
– The propagation policy specifies how to obtain new derived authorizations

from the explicit authorization table. Typically, derived authorizations are
obtained according to hierarchy-based derivation. However, derivation rules
are not restricted to this particular form of derivation.

– The conflict resolution policy describes how possible conflicts between the
(explicit and/or derived) authorizations should be solved. Possible conflict
resolution policies include no-conflict (conflicts are considered errors), de-
nials take precedence (negative authorizations prevail over positive ones),
permissions-take-precedence (positive authorizations prevail over negative
ones), and nothing-takes-precedence (the conflict remains unsolved). Some
forms of conflict resolutions can be expressed within the propagation policy,
as in the case of overriding (also known as most-specific-takes precedence).

– A decision policy defines the response that should be returned to each access
request. In case of conflicts or gaps (i.e. some access is neither authorized
nor denied), the decision policy determines the answer. In many systems,
decisions assume either the open or the closed form (by default, access is
granted or denied, respectively).

Starting from this separation, the authorization specification language of FAF
takes the following approach:

234 S. De Capitani di Vimercati, P. Samarati, and S. Jajodia

– The authorization table is viewed as a database.
– Policies are expressed by a restricted class of stratified and function-free

normal logic programs called authorization specifications.
– The semantics of authorization specifications is the stable model seman-

tics [16]. The structure of authorization specifications guarantees stratifica-
tion and hence, stable model uniqueness and PTIME computability.

The four decision stages correspond to the following predicates. (Below s, o,
and a denote a subject, object, and action term, respectively, where a term
is either a constant value in the corresponding domain or a variable ranging
over it).

cando(o,s,±a) represents authorizations explicitly inserted by the security ad-
ministrator. They represent the accesses that the administrator wishes to allow
or deny (depending on the sign associated with the action).

dercando(o,s,±a) represents authorizations derived by the system using logic
program rules.

do(o,s,±a) handles both conflict resolution and the final decision.

Moreover, a predicate done keeps track of the history of accesses (for exam-
ple, this can be useful to implement a Chinese Wall policy), and a predicate
error can be used to express integrity constraints. In addition, the language has
a set of predicates for representing hierarchical relationships (hie-predicates)
and additional application-specific predicates, called rel-predicates. Hierarchi-
cal predicates represent hierarchical relationships within the different compo-
nents of the system (objects, subjects, or access modes). For instance, in most
realistic systems, data items are organized hierarchically. For example, in a file
system, the basic objects are files, but these files are typically organized in a
hierarchical directory structure. Similarly, in an object-oriented database, the
objects being accessed are organized into an object hierarchy. In an analo-
gous way, authorization subjects can be basic users or hierarchical groups in
which they are organized. Application-specific predicates capture the possible
different relationships, existing between the elements of the data system, that
may need to be taken into account by the access control system. Examples of
rel-predicates are owner(user, object), which models ownership of objects
by users, or supervisor(user1, user2), which models responsibilities and con-
trol within the organizational structure.

Authorization specifications are stated as logic rules defined over the above
predicates. To ensure stratifiability, the format of the rules is restricted as illus-
trated in Figure 3. Note that the adopted strata reflect the logical ordering of
the four decision stages.

The authors of [18] present a materialization technique for producing, stor-
ing, and updating the stable model of the policy. The model is computed on the
initial specifications and updated with incremental maintenance strategies.

Note that the clean identification and separation of the four decision stages
can be regarded as a basis for a policy specification methodology. In this sense,

Policies, Models, and Languages for Access Control 235

Stratum Predicate Rules defining predicate

0 hie-predicates Base relations.
rel-predicates Base relations.
done Base relation.

1 cando Body may contain done, hie-
and rel-literals.

2 dercando Body may contain cando, dercando, done,
hie-, and rel- literals. Occurrences of
dercando literals must be positive.

3 do When head is of the form
do(, , +a) body may contain cando,
dercando, done, hie- and rel- literals.

4 do When head is of the form
do(o, s,−a) body contains just one literal
¬do(o, s, +a).

5 error Body may contain do, cando, dercando, done,
hie-, and rel- literals.

Fig. 3. Rule composition and stratification of the proposal in [18]

propagation

policy

conflict resol.
& decision
policy

integrity
constraints

history

tabletable

authorization

(o,s,+a) granted/denied

Fig. 4. Functional authorization architecture in [18]

the choice of a precise ontology and other syntactic restrictions (such as those
illustrated in Figure 3) may assist security managers in formulating their policies.

4 Conclusions

Access control models, policies, and languages are constantly under development
to obtain frameworks flexible and expressive enough so as to handle the specifi-
cation and enforcement of security requirements of many emerging applications
and real-world scenarios. In this paper, we presented the main features that
modern access control models and policies should support and discussed recent
proposals in the area of access control languages.

236 S. De Capitani di Vimercati, P. Samarati, and S. Jajodia

References

1. Apache http server version 2.0.
http://www.apache.org/docs-2.0/misc/tutorials.html.

2. C. Bettini, S. Jajodia, S. Wang, and D. Wijesekera. Provisions and obligations
in policy rule management and security applications. In Proc. 28th International
Conference on Very Large Data Bases, Hong Kong, China, August 2002.

3. M. Blaze, J. Feigenbaum, J. Ioannidis, and A.D. Keromytis. The role of trust
management in distributed systems security. Secure Internet Programming: Issues
in Distributed and Mobile Object Systems. Springer Verlag LNCS State-ofthe- Art
series,, 1998.

4. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proc.
of the 1996 IEEE Symposiumon Security and Privacy, Oakland, CA, USA, May
1996.

5. P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for composing
access control policies. ACM Transactions on Information and System Security,
5(1):1–35, February 2002.

6. P. Bonatti and P. Samarati. A unified framework for regulating access and infor-
mation release on the web. Journal of Computer Security, 10(3):241–272, 2002.

7. D. Box et al. Web services policy framework (WS-Policy) version 1.1., May 2003.
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policy.asp.

8. Y-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. Referee:
trust management forweb applications. WorldWide Web Journal, 2(3):706–734,
1997.

9. E. Damiani, S. De Capitani di Vimercati, C. Fugazza, and P. Samarati. Extending
policy languages to the semantic web. In Proc. of the International Conference on
Web Engineering, Munich, Germany, July 2004.

10. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A
fine-grained access control system for XML documents. ACM Transactions on
Information and System Security (TISSEC), 5(2):169–202, May 2002.

11. C.J. Date. An Introduction to Database Systems. Addison-Wesley, 6th edition,
1995.

12. J. DeTreville. Binder, a logic-based security language. In Proc. of the 2001 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, May 2002.

13. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraints logic program-
ming. ACM Transactions of Programming Languages and Systems, 22(5):861–931,
September 2000.

14. S. Farrell and R. Housley. An internet attribute certificate profile for authorization.
RFC 3281, April 2002.

15. E.B. Fernandez, E. Gudes, and H. Song. A model for evaluation and administration
of security in object-oriented databases. IEEE Transaction on Knowledge and Data
Engineering, 6(2):275–292, 1994.

16. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. of the 5th International Conference and Symposium on Logic Programming,
pages 1070–1080, Cambridge, Massachusetts, 1988. The MIT Press.

17. S. Jajodia, M. Kudo, and V.S. Subrahmanian. Provisional authorizations. In
Anup Ghosh, editor, E-Commerce Security and Privacy, pages 133–159. Kluwer
Academic Publishers, Boston, 2001.

18. S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible sup-
port for multiple access control policies. ACM Transactions on Database Systems,
26(2):214–260, June 2001.

Policies, Models, and Languages for Access Control 237

19. T. Jim. Sd3: A trust management system with certified evaluation. In Proc. of the
2001 IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 2001.

20. M. Kudoh, Y. Hirayama, S. Hada, and A. Vollschwitz. Access control specification
based on policy evaluation and enforcement model and specification language. In
Symposium on Cryptograpy and Information Security, SCIS’2000, 2000.

21. C.E. Landwehr. Formal models for computer security. ACM Computing Surveys,
13(3):247–278, 1981.

22. N. Li, B.N. Grosof, and Feigenbaum. Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions on Information and System Security,
6(1):128–171, February 2003.

23. N. Li and J.C. Mitchell. Datalog with constraints: A foundation for trust-
management languages. In Proc. of the Fifth International Symposium on Practical
Aspects of Declarative Languages (PADL 2003), New Orleans, LA, USA, January
2003.

24. N. Li, J.C. Mitchell, and W.H. Winsborough. Design of a role-based trust-
management framework. In Proc. of the IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 2002.

25. T. Lunt. Access control policies: Some unanswered questions. In IEEE Computer
Security Foundations Workshop II, pages 227–245, Franconia, NH, June 1988.

26. OASIS. eXtensible Access Control Markup Language (XACML) Version 1.0, 2003.
http://www.oasis-open.org/committees/xacml.

27. OASIS. Security Assertion Markup Language (SAML) V1.1, 2003.
http://www.oasis-open.org/committees/security/.

28. OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0, 2004.
http://www.oasis-open.org/committees/xacml.

29. F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for
next-generation database systems. ACM TODS, 16(1):89–131, March 1991.

30. P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models,
and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, LNCS 2171. Springer-Verlag, 2001.

31. K.E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills,
and L. Yu. Requirements for policy languages for trust negotiation. In Proc. of
the 3rd International Workshop on Policies for Distributed Systems and Networks
(POLICY 2002), Monterey, CA, June 2002.

32. H. Shen and P. Dewan. Access control for collaborative environments. In Proc. Int.
Conf. on Computer Supported Cooperative Work, pages 51–58, November 1992.

33. L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute
based access control. In Proc. of the 2004 ACM Workshop on Formal Methods in
Security Engineering, Washington DC, USA, October 2004.

34. D. Wijesekera and S. Jajodia. A propositional policy algebra for access control.
ACM Transactions on Information and System Security, 6(2):286–325, May 2003.

35. T. Yu, M. Winslett, and K.E. Seamons. Supporting structured credentials and
sensitive policies through interoperable strategies for automated trust negotiation.
ACM Transactions on Information and System Security, 6(1):1–42, February 2003.

	Introduction
	Policies and Models for Access Control
	Conditions and Groups
	Positive and Negative Authorizations
	Attribute-Based Specifications

	Languages for Access Control
	A Flexible Authorization Framework

	Conclusions
	References

